首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ‘enemy‐free space’ hypothesis predicts that herbivorous insects can escape their natural enemies by switching to a novel host plant, with consequences for the evolution of host plant specialisation. However, if natural enemies follow herbivores to their novel host plants, enemy‐free space may only be temporary. We tested this by studying the colonisation of the introduced tree Eucalyptus grandis (Hill) Maiden (Myrtaceae) by insects in Brazil, where various species of herbivores have added eucalyptus to their host plant range, which consists of native myrtaceous species such as guava. Some herbivores, for example, Thyrinteina leucoceraea Ringe (Lepidoptera: Geometridae), cause outbreaks in eucalyptus plantations but not on guava, possibly because eucalyptus offers enemy‐free space. We sampled herbivores (mainly Lepidoptera species) and natural enemies on eucalyptus and guava and assessed parasitism of Lepidoptera larvae on both host plant species during ca. 2 years. Overall, predators were encountered more frequently on guava than on eucalyptus. In contrast, parasitoids were encountered equally and parasitism rates of Lepidoptera larvae were similar on both host plants. This indicates that herbivores may escape some enemies by moving to a novel host plant. However, this escape may be temporary and may vary with time. We argue that studying temporal and spatial patterns of enemy‐free space and the response of natural enemies to host use changes of their herbivorous prey is essential for understanding the role of natural enemies in the evolution of host plant use by herbivorous arthropods.  相似文献   

2.
Adaptation to novel host plants is a much‐studied process in arthropod herbivores, but not in their predators. This is surprising, considering the attention that has been given to the role of predators in host range expansion in herbivores; the enemy‐free space hypothesis suggests that plants may be included in the host range of herbivores because of lower predation and parasitism rates on the novel host plants. This effect can only be important if natural enemies do not follow their prey to the novel host plant, at least not immediately, thus allowing the herbivores to adapt to the novel host plant. Hence, depending on the speed with which natural enemies follow their prey to a new host plant, enemy‐free space on novel host plants may only exist for a limited period. This situation may presently be occurring in a system consisting of the herbivorous moth Thyrinteina arnobia Stoll (Lepidoptera: Geometridae) that attacks various species of Myrtaceae, such as guava (Psidium guajava L.) and jaboticaba (Myrciaria spp.), in Brazil. Since the introduction of eucalyptus (Myrtaceae) species into this country some 100 years ago, the moth has included this plant species in its host range and frequently causes outbreaks, a phenomenon that does not occur on the native host plant species. This suggests that the natural enemies that attack the herbivore on native species are not very effective on the novel host. We tested this hypothesis by studying the searching behaviour of one of the natural enemies, the omnivorous predatory bug Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae). When offered a choice between plants of the two species, the predators (originally collected in eucalyptus plantations) preferred guava to eucalyptus when both plant species were clean, infested with herbivores, or damaged by herbivores but with herbivores removed prior to the experiments. The bugs preferred herbivore‐damaged to clean guava, and showed a slight preference for damaged to clean eucalyptus. These results may explain the lack of impact of predatory arthropods on herbivore populations on eucalyptus and suggests that eucalyptus may offer an enemy‐free space for herbivores.  相似文献   

3.
Pathogens and arthropod natural enemies may contribute to the suppression of insect pest populations either as individual species or as species complexes. However, because natural enemies of insects have evolved and function in a multitrophic context it is important to assess interactions within complexes of natural enemies if they are to be exploited effectively in pest management. Natural enemies can interact either synergistically/additively (e.g. enhanced transmission and dispersal of insect pathogens) or antagonistically (e.g. parasitism/infection, predation and competition). In this paper, studies assessing the potential interactions between insect and fungal natural enemies are reviewed. In general, these studies indicate the positive nature of the interactions between arthropod natural enemies and fungal pathogens with respect to the control of insect populations. More work is required to investigate further the many ways in which the natural enemy community interacts in the agroecosystem  相似文献   

4.
There are many reasons why it is important that we find ways to conserve, and better utilize natural enemies of invertebrate crop pests. Currently, measures of natural enemy impact are rarely incorporated into studies that purport to examine pest control. Most studies examine pest and natural enemy presence and/or abundance and then qualitatively infer impact. While this provides useful data to address a range of ecological questions, a measure of impact is critical for guiding pest management decision‐making. Often some very simple techniques can be used to obtain an estimate of natural enemy impact. We present examples of field‐based studies that have used cages, barriers to restrict natural enemy or prey movement, direct observation of natural enemy attack, and sentinel prey items to estimate mortality. The measure of natural enemy impact used in each study needs to be tailored to the needs of farmers and the specific pest problems they face. For example, the magnitude of mortality attributed to natural enemies may be less important than the timing and consistency of that mortality between seasons. Tailoring impact assessments will lead to research outcomes that do not simply provide general information about how to conserve natural enemies, but how to use these natural enemies as an integral part of decision‐making.  相似文献   

5.
Conservation biological control and enemy diversity on a landscape scale   总被引:8,自引:1,他引:7  
Conservation biological control in agroecosystems requires a landscape management perspective, because most arthropod species experience their habitat at spatial scales beyond the plot level, and there is spillover of natural enemies across the crop–noncrop interface. The species pool in the surrounding landscape and the distance of crop from natural habitat are important for the conservation of enemy diversity and, in particular, the conservation of poorly-dispersing and specialized enemies. Hence, structurally complex landscapes with high habitat connectivity may enhance the probability of pest regulation. In contrast, generalist and highly vagile enemies may even profit from the high primary productivity of crops at a landscape scale and their abundance may partly compensate for losses in enemy diversity. Conservation biological control also needs a multitrophic perspective. For example, entomopathogenic fungi, plant pathogens and endophytes as well as below- and above-ground microorganisms are known to influence pest-enemy interactions in ways that vary across spatiotemporal scales. Enemy distribution in agricultural landscapes is determined by beta diversity among patches. The diversity needed for conservation biological control may occur where patch heterogeneity at larger spatial scales is high. However, enemy communities in managed systems are more similar across space and time than those in natural systems, emphasizing the importance of natural habitat for a spillover of diverse enemies. According to the insurance hypothesis, species richness can buffer against spatiotemporal disturbances, thereby insuring functioning in changing environments. Seemingly redundant enemy species may become important under global change. Complex landscapes characterized by highly connected crop–noncrop mosaics may be best for long-term conservation biological control and sustainable crop production, but experimental evidence for detailed recommendations to design the composition and configuration of agricultural landscapes that maintain a diversity of generalist and specialist natural enemies is still needed.  相似文献   

6.
Biological invasions are ecologically and economically costly. Understanding the major mechanisms that contribute to an alien species becoming invasive is seen as essential for limiting the effects of invasive alien species. However, there are a number of fundamental questions that need addressing such as why some communities are more vulnerable to invasion than others and, indeed, why some alien species become widespread and abundant. The enemy release hypothesis (ERH) is widely evoked to explain the establishment and proliferation of an alien species. ERH predicts that an alien species introduced to a new region should experience a decrease in regulation by natural enemies which will lead to an increase in the distribution and abundance of the alien species. At the centre of this theory is the assumption that natural enemies are important regulators of populations. Additionally, the theory implies that such natural enemies have a stronger regulatory effect on native species than they do on alien species in the introduced range, and this disparity in enemy regulation results in increased population growth of the alien species. However, empirical evidence for the role of the ERH in invasion success is lacking, particularly for invertebrates. Many studies equate a reduction in the number of natural enemies associated with an alien species to release without studying population effects. Further insight is required in relation to the effects of specific natural enemies on alien and native species (particularly their ability to regulate populations). We review the role of ecological models in exploring ERH. We suggest that recent developments in molecular technologies offer considerable promise for investigating ERH in a community context.  相似文献   

7.
Although very common under natural conditions, the consequences of multiple enemies (parasites, predators, herbivores, or even 'chemical' enemies like insecticides) on investment in defence has scarcely been investigated. In this paper, we present a simple model of the joint evolution of two defences targeted against two enemies. We illustrate how the respective level of each defence can be influenced by the presence of the two enemies. Furthermore, we investigate the influences of direct interference and synergy between defences. We show that, depending on certain conditions (costs, interference or synergy between defences), an increase in selection pressure by one enemy can have dramatic effects on defence against another enemy. It is generally admitted that increasing the encounter rate with a second natural enemy can decrease investment in defence against a first enemy, but our results indicate that it may sometimes favour resistance against the first enemy. Moreover, we illustrate that the global defence against one enemy can be lower when only this enemy is present: this has important implications for experimental measures of resistance, and for organisms that invade an area with less enemies or whose community of enemies is reduced. We discuss possible implications of the existence of multiple enemies for conservation biology, biological control and chemical control.  相似文献   

8.
Interactions between resource availability and enemy release in plant invasion   总被引:12,自引:0,他引:12  
Understanding why some exotic species become invasive is essential to controlling their populations. This review discusses the possibility that two mechanisms of invasion, release from natural enemies and increased resource availability, may interact. When plants invade new continents, they leave many herbivores and pathogens behind. Species most regulated by enemies in their native range have the most potential for enemy release, and enemy regulation may be strongest for high-resource species. High resource availability is associated with low defence investment, high nutritional value, high enemy damage and consequently strong enemy regulation. Therefore, invasive plant species adapted to high resource availability may also gain most from enemy release. Strong release of high-resource species would predict that: (i) both enemy release and resources may underlie plant invasion, leading to potential interactions among control measures; (ii) increases in resource availability due to disturbance or eutrophication may increase the advantage of exotic over native species; (iii) exotic species will tend to have high-resource traits relative to coexisting native species; and (iv) although high-resource plants may experience strong enemy release in ecological time, well-defended low-resource plants may have stronger evolutionary responses to the absence of enemies.  相似文献   

9.
In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest.  相似文献   

10.
Interspecific interactions among insect natural enemies have seldom been investigated experimentally within the context of biological control. Research in this area is needed due to the often contradictory predictions provided by the many theoretical models, the increasing dependence on biological control, and the concern that biological control agents may adversely affect some nontarget organisms. We describe a study whereby the occurrence and dynamics of interspecific interactions among three natural enemies (two parasitoids:Encarsia formosaandEncarsia pergandiella;and one predatorDelphastus pusillus) of the whitefly,Bemisia argentifolii(previously referred to asBemisia tabacistrain “B”), were evaluated in greenhouse cage experiments. Eight populations consisting of all possible combinations of the three natural enemies and one population of whitefly alone were established to test the following hypotheses: (1) Natural enemy introductions are capable of suppressingB. argentifoliipopulations; (2) all interspecific interactions are detrimental to achieving biological control; (3) the likelihood of achieving biological control decreases as the potential number of interspecific interactions increases; and (4) the species composition of biological control agents is of greater consequence than the number of natural enemy species released. In addition, we tested the hypothesis (5) that the frequency of interspecific interactions increases with a decrease in host or prey availability. Our results demonstrate that all combinations of natural enemies provided significant levels of whitefly suppression. While the intensities of interspecific interactions among natural enemy species were frequently positively and significantly correlated with the densities of parasitized whitefly, interspecific interactions among natural enemies were not detrimental to achieving higher levels of biological control. The composition of species released, rather than the number of species released, was of greater importance to accomplishing biological control. Releases ofD. pusillusin combination with one or both of the parasitoids provided the greatest levels of whitefly suppression. These results suggest that the types of interspecific interactions rather than the numbers of interspecific interactions among natural enemies may be important to the outcome of inundative biological control programs.  相似文献   

11.
Heikki Pöykkö 《Oikos》2011,120(4):564-569
According to the enemy‐free space hypothesis (EFS), parasites and predators create a selective force for a specialization on a host that assures better protection against natural enemies than other potential hosts. Few studies have found support for EFS and none of them have covered the whole larval period in natural conditions. I studied the growth and survival of lichen‐feeding moth larvae on five lichen species with and without their natural enemies in natural conditions covering the whole larval period. All the three following EFS predictions gained support. First, natural enemies caused significant mortality of larvae. Second, when natural enemies were present, larval survival was highest on preferred Ramalina lichens. Third, larvae attained higher mass on non‐preferred Parmelia sulcata than on Ramalina species, indicating fecundity cost to feed on Ramalina species instead of P. sulcata. EFS for C. lichenaria larvae on Ramalina species is likely a consequence of shrubby appearance of Ramalina species which provide better larval protection from predation than other hosts.  相似文献   

12.
The popularly cited enemy release hypothesis, which states that non-native species are released from population control by their enemies, has not been adequately tested in plants. Many empirical studies have compared damage to native versus non-native invaders only in the invaded range, which can lead to erroneous conclusions regarding enemy release. Biogeographical studies that have compared natural enemies in native and introduced ranges have typically focused on a small area of the plants’ distributions in each range, only one plant species, and/or only one guild of natural enemies. To test enemy release, we first surveyed both pathogens and herbivores in multiple populations in both the native and naturalized ranges of three commonly co-occurring perennial bunchgrasses introduced to the United States from Europe. We then compared our field results to the number of fungal pathogens that have been documented on each species from published host-pathogen data compilations. Consistent with enemy release, our field survey showed less herbivory and denser populations in the naturalized range, but there was no evidence of release from pathogens. In contrast, the published host-pathogen data compilations produced evidence of enemy release from pathogens. The difference in results produced by the two approaches highlights the need for multiple approaches to testing mechanisms of invasions by introduced species, which can enable well supported theory to inform sound management practices.  相似文献   

13.
High biodiversity is an important component of sustainable agricultural systems, and previous studies have found that increases in the diversity of the natural enemies of pests are associated with decreases in pest populations. Weaver ants are well known for their highly territorial and aggressive behaviour and for their control efficiency of many insect pests in tropical crop trees. Because of this, the ants have been used as a key component in integrated pest management (IPM) programmes for tropical crop trees. In implementing the IPM programmes, we received a number of enquiries related to whether weaver ants have negative effects on arthropod diversity and other natural enemies in orchard systems due to their aggressive behaviour. To answer these questions, we regularly sampled canopy arthropods in cashew and mango orchards in the Northern Territory of Australia in 1996, 2002 and 2003. We sampled, using a vacuum sampler, orchards with and without weaver ants. Cashew and mango plots with abundant weaver ants had similar or higher canopy arthropod and natural enemy diversity and similar ratios of natural enemies to insect pests, compared with plot where the weaver ant was absent. The study also showed that the application of insecticides reduced arthropod diversity and the ratio of natural enemies to insect pests in a mango orchard. However, insecticide spray did not affect natural enemy diversity and abundance, which may be related to a high immigration rate of natural enemies in small plots surrounded by areas that were not sprayed.  相似文献   

14.
Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies.  相似文献   

15.
The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.  相似文献   

16.
Conservation research has historically been aimed at preserving high value natural habitats, but urbanization and its associated impacts have prompted broader mandates that include the preservation and promotion of biodiversity in cities. Current efforts within urban landscapes aim to support biodiversity and diverse ecosystem services such as storm water management, sustainable food production, and toxin remediation. Arthropod natural enemies provide biocontrol services important for the ecosystem management of urban greenspaces. Establishing habitat for these and other beneficial arthropods is a growing area of urban conservation. Habitat design, resource inputs, management, and abiotic conditions shape the value of greenspace habitats for arthropods. In general, larger patches with diverse plant communities support a greater abundance and diversity of natural enemies and biocontrol services, yet opposing patterns or no effects have also been documented. The surrounding landscape is likely a contributor to this variation in natural enemy response to patch-scale habitat design and management. Looking across rural–urban landscape gradients, natural enemy communities shift toward dominance by habitat generalists and disturbance tolerant species in urban areas compared to rural or natural communities. These changes have been linked to variation in habitat fragmentation, plant productivity and management intensity. In landscape-scale studies focusing solely within cities, variables such as impervious surface area and greenspace connectivity affect the community assembly of natural enemies within a patch. Given these findings, a greater mechanistic understanding of how both the composition and spatial context of urban greenspaces influence natural enemy biodiversity–biocontrol relationships is needed to advance conservation planning and implementation.  相似文献   

17.
The use of plants to provide nectar and pollen resources to natural enemies through habitat management is a growing focus of conservation biological control. Current guidelines frequently recommend use of annual plants exotic to the management area, but native perennial plants are likely to provide similar resources and may have several advantages over exotics. We compared a set of 43 native Michigan perennial plants and 5 frequently recommended exotic annual plants for their attractiveness to natural enemies and herbivores for 2 yr. Plant species differed significantly in their attractiveness to natural enemies. In year 1, the exotic annual plants outperformed many of the newly established native perennial plants. In year 2, however, many native perennial plants attracted higher numbers of natural enemies than exotic plants. In year 2, we compared each flowering plant against the background vegetation (grass) for their attractiveness to natural enemies and herbivores. Screening individual plant species allowed rapid assessment of attractiveness to natural enemies. We identified 24 native perennial plants that attracted high numbers of natural enemies with promise for habitat management. Among the most attractive are Eupatorium perfoliatum L., Monarda punctata L., Silphium perfoliatum L., Potentilla fruticosa auct. non L., Coreopsis lanceolata L., Spiraea alba Duroi, Agastache nepetoides (L.) Kuntze, Anemone canadensis L., and Angelica atropurpurea L. Subsets of these plants can now be tested to develop a community of native plant species that attracts diverse natural enemy taxa and provides nectar and pollen throughout the growing season.  相似文献   

18.
郝树广  罗跃进 《昆虫学报》1998,41(4):343-353
该项研究通过系统调查,把稻田节肢动物群落按营养和取食关系划分为三个营养层(基位物种,中位物种,顶位物种)和不同的功能集团,在物种、功能集团和营养层三个组织层次水平上探讨了稻田节肢动物群落的结构和多样性,较全面地考察了整个群落中物种和功能集团在时间上的结构动态、功能关系和数量消长规律。结果表明:功能集团多样性与种多样性的变化趋势较一致,在群落研究中似乎可以用对功能集团的研究代替对种的研究,从而简化物种间复杂的网络关系,认为这是研究群落物种间功能关系的途径之一。营养层多样性在时间序列过程中波动性较小,所以可用于群落相似性和稳定性的分析。研究分析了中性昆虫对害虫调控的意义,认为对于天敌作用的评价应以整个群落为基础,全面考虑天敌、害虫、以及中性昆虫的数量、丰盛度、空间时间生态位等信息。  相似文献   

19.
Determining the relative contributions of different ecological factors for herbivore fitness is one key to understanding the ecology and evolution of host plant choice by herbivores. Natural enemies are increasingly being recognized as an important factor: host plants of inferior quality for development may still be used by herbivores if they provide enemy‐free space (EFS). Here we used the tobacco hornworm, Manduca sexta, to experimentally disentangle the effects of natural enemies from the potentially confounding factors of host plant quality, competition and microhabitat. We explored the consequences for both individual components of fitness and total fitness of M. sexta feeding on a typical high quality host plant, tobacco Nicotiana tabacum and a novel, low quality host plant, devil's claw Proboscidea louisianica in an experimental field environment in the presence of a parasitoid natural enemy, Cotesia congregata. Although early larval survival, development and growth rates, final body size and fecundity were all reduced for M. sexta feeding on devil's claw, a high rate of parasitism on tobacco and an absence of parasitism on devil's claw contributed to similar total fitness (net reproductive rate, R0) across the two host plant species. Our results suggest M. sexta has adopted a novel host plant (devil's claw) outside its typical host range because this host plant provides enemy free space. In addition, oviposition behavior of adult female M. sexta appears to be well suited to exploiting the enemy‐free space on devil's claw; oviposition by M. sexta on devil's claw appears to correspond with seasonal variation in parasitoid abundance.  相似文献   

20.
Areawide management has a long history of achieving solutions that target pests, however, there has been little focus on the areawide management of arthropod natural enemies. Landscape ecology studies that show a positive relationship between natural enemy abundance and habitat diversity demonstrate landscape‐dependent pest suppression, but have not yet clearly linked their findings to pest management or to the suite of pests associated with crops that require control. Instead the focus has often been on model systems of single pest species and their natural enemies. We suggest that management actions to capture pest control from natural enemies may be forth coming if: (i) the suite of response and predictor variables focus on pest complexes and specific management actions; (ii) the contribution of “the landscape” is identified by assessing the timing and numbers of natural enemies immigrating and emigrating to and from the target crop, as well as pests; and (iii) pest control thresholds aligned with crop development stages are the benchmark to measure impact of natural enemies on pests, in turn allowing for comparison between study regions, and generalizations. To achieve pest control we will need to incorporate what has been learned from an ecological understanding of model pest and natural enemy systems and integrate areawide landscape management with in‐field pest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号