首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular forms of acetylcholinesterases in Alzheimer's disease   总被引:2,自引:0,他引:2  
In this study, we examined 26 cases of Alzheimer's disease (AD) and 14 age-matched controls. In Brodmann area 21 cerebral cortex of the AD cases, there was no change in soluble G1 and G4 acetylcholinesterase (AChE) (EC 3.1.1.7), a significant 40% decrease in membrane-associated G4 AChE, significant 342 and 406% increases in A12 and A8 AChE, and a significant 71% decrease in choline acetyltransferase (ChAT) (EC 2.3.1.6). Our working hypothesis to account for these changes postulates that soluble globular forms are unchanged because they are primarily associated with intrinsic cortical neurons that are relatively unaffected by AD, that ChAT and membrane-associated G4 AChE decrease because they are primarily associated with incoming axons of cholinergic neurons that are abnormal in AD, and that asymmetric forms of AChE increase because of an acrylamide-type impairment of fast axonal transport in diseased incoming cholinergic axons. In the nucleus basalis of Meynert (nbM) of the 26 AD cases, there was a significant 61% decrease in the number of cholinergic neurons, an insignificant 23% decrease in nbM ChAT, a significant 298% increase in nbM ChAT per cholinergic neuron, and a significant 7% increase in the area of cholinergic perikarya. To account for the increased ChAT in cholinergic neurons and the enlargement of cholinergic perikarya, we propose that slow axonal transport may be impaired in nbM cholinergic neurons in AD.  相似文献   

2.
Neurons are commonly identified by some specific features. However, recent studies showed variations in identified neurons, which casts doubt on the reliability of neuron identification. This paper tests the anatomical approach that groups of neurons, which look roughly the same in different preparations, really do contain the same neurons; it also tests the reliability of motor neuron identification by cell body size and position of flight motor neurons in the silk moth, Bombyx mori (Lepidoptera : Bombycidae).Soma size and position of 9 motor neurons, which innervate the mesothoracic dorsal longitudinal muscles (DLMs), were quantitatively measured in cobalt back-filled preparations. The neurons were classified into 5 subgroups by soma size and position, and muscle innervation, although neurons in the same subgroup could not be individually identified. The soma size was essentially constant for individual neuron subgroups, but the position varied somewhat. Two subgroups were generally distributed at one position in the ganglion, but others had 2 separate soma areas, and different animals showed different distributions in these 2 areas. These results show that DLM motor neurons can be identified by the soma size and position only when the variation of soma position is examined in advance.  相似文献   

3.
In adult songbirds, the telencephalic song nucleus HVC and its efferent target RA undergo pronounced seasonal changes in morphology. In breeding birds, there are increases in HVC volume and total neuron number, and RA neuronal soma area compared to nonbreeding birds. At the end of breeding, HVC neurons die through caspase‐dependent apoptosis and thus, RA neuron size decreases. Changes in HVC and RA are driven by seasonal changes in circulating testosterone (T) levels. Infusing T, or its metabolites 5α‐dihydrotestosterone (DHT) and 17 β‐estradiol (E2), intracerebrally into HVC (but not RA) protects HVC neurons from death, and RA neuron size, in nonbreeding birds. The phosphoinositide 3‐kinase (PI3K)‐Akt (a serine/threonine kinase)‐mechanistic target of rapamycin (mTOR) signaling pathway is a point of convergence for neuroprotective effects of sex steroids and other trophic factors. We asked if mTOR activation is necessary for the protective effect of hormones in HVC and RA of adult male Gambel's white‐crowned sparrows (Zonotrichia leucophrys gambelii). We transferred sparrows from breeding to nonbreeding hormonal and photoperiod conditions to induce regression of HVC neurons by cell death and decrease of RA neuron size. We infused either DHT + E2, DHT + E2 plus the mTOR inhibitor rapamycin, or vehicle alone in HVC. Infusion of DHT + E2 protected both HVC and RA neurons. Coinfusion of rapamycin with DHT + E2, however, blocked the protective effect of hormones on HVC volume and neuron number, and RA neuron size. These results suggest that activation of mTOR is an essential downstream step in the neuroprotective cascade initiated by sex steroid hormones in the forebrain.  相似文献   

4.
In zebra finches only males sing, and several song control nuclei contain more neurons in adult males than in females. In the robust nucleus of the archistriatum (RA), this sex difference in neuron number arises because neuron survival is greater in young males than in females. The events initiating this sex difference in neuron survival are not known, but in earlier studies we observed that during sexual differentiation the proliferation and/or survival of RA cells exhibiting glial morphology is greater in males than in females. Because glia and glia-derived molecules are known to exert trophic effects on developing neurons, we wanted to determine when the sex difference in RA glia develops relative to the sexually dimorphic growth and survival of RA neurons. Male and female zebra finches were injected twice daily with 3[H]thymidine for 2 days beginning either on day 15 or 27. Two days later (day 18 or 30) sections through the RA were processed for autoradiography. Virtually all of the 3[H]thymidine labeled cells within the RA exhibited morphological features characteristic of glia and were not immunoreactive for the neuron-specific antigen, Hu. The number of these 3[H]thymidine labeled cells was measured, as were the number and soma size of RA neurons. Sex differences in RA neuron number and soma size were not evident at day 18, but emerged by day 30. However, at both ages the density of 3[H]thymidine labeled RA cells and their total number/RA neuron were significantly greater in males than in females. No such sexual dimorphism in the density of 3[H]thymidine labeled cells was evident in the archistriatum lateral to the RA, or within the RA of adult birds. These data indicate that sexually dimorphic gliogenesis is an early event in the sexual differentiation of the RA, preceding sex differences in RA neuron growth and survival. The possibility that glia (or glia-derived substances) may contribute to the neurotrophic effects of masculinization within the RA is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
We investigated whether puberty influences the morphology of the medial nucleus of the amygdala (MeA) by comparing Siberian hamsters (Phodopus sungorus) that had been raised from birth in either long day (LD; 16:8 h light:dark) or short day (SD; 8:16) photoperiods. Hamsters were sacrificed at 42-49 days of age, at which point all LD hamsters were reproductively mature, as evidenced by adult-like testes weights (mean: 657 mg). In contrast, the testes weights of the SD hamsters were low (mean: 31 mg), indicating that the SD photoperiod had delayed puberty. The regional volume and mean soma size of the four MeA subnuclei was estimated bilaterally by stereological procedures. In the posterior dorsal and ventral MeA subnuclei, regional volume was 22-25% larger, and mean soma size 18% larger, in LD males than SD males. Unbiased cell counts in the posterior dorsal MeA showed that LD and SD hamsters have equivalent neuron numbers. In the anterior MeA subnuclei, regional volumes and soma sizes from LD and SD hamsters were equivalent. Additionally, the regional volume of the posteroventral subnucleus was larger in the right hemisphere than the left, but this laterality did not respond to photoperiod manipulation. These results suggest that the extant neurons within the posterior MeA, a steroid-sensitive nucleus implicated in socio-sexual behavior, grow in response to the elevated levels of circulating androgen accompanying puberty, and that photoperiodic regulation of puberty affects morphological maturation of this nucleus.  相似文献   

6.
Automated and accurate localization and morphometry of somas in 3D neuron images is essential for quantitative studies of neural networks in the brain. However, previous methods are limited in obtaining the location and surface morphology of somas with variable size and uneven staining in large-scale 3D neuron images. In this work, we proposed a method for automated soma locating in large-scale 3D neuron images that contain relatively sparse soma distributions. This method involves three steps: (i) deblocking the image with overlap between adjacent sub-stacks; (ii) locating the somas in each small sub-stack using multi-scale morphological close and adaptive thresholds; and (iii) fusion of the repeatedly located somas in all sub-stacks. We also describe a new method for the accurate detection of the surface morphology of somas containing hollowness; this was achieved by improving the classical Rayburst Sampling with a new gradient-based criteria. Three 3D neuron image stacks of different sizes were used to quantitatively validate our methods. For the soma localization algorithm, the average recall and precision were greater than 93% and 96%, respectively. For the soma surface detection algorithm, the overlap of the volumes created by automatic detection of soma surfaces and manually segmenting soma volumes was more than 84% for 89% of all correctly detected somas. Our method for locating somas can reveal the soma distributions in large-scale neural networks more efficiently. The method for soma surface detection will serve as a valuable tool for systematic studies of neuron types based on neuron structure.  相似文献   

7.
Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.  相似文献   

8.
 The neocortex undergoes a complex transformation from mouse to whale. Whereas synapse density remains the same, neuron density decreases as a function of gray matter volume to the power of around −1/3, total convoluted surface area increases as a function of gray matter volume to the power of around 8/9, and white matter volume disproportionately increases as a function of gray matter volume to the power of around 4/3. These phylogenetic scaling relationships (including others such as neuron number, neocortex thickness, soma radius, and number of cortical areas) are clues to understanding the principles driving neocortex organization, but there is currently no theory that can explain why these neocortical quantities scale as they do. Here I present a two-part model that explains these neocortical allometric scaling laws. The first part of the model is a special case of the physico-mathematical model recently put forward to explain the quarter power scaling laws in biology. It states that the neocortex is a space-filling neural network through which materials are efficiently transported, and that synapse sizes do not vary as a function of gray matter volume. The second part of the model states that the neocortex is economically organized into functionally specialized areas whose extent of area-interconnectedness does not vary as a function of gray matter volume. The model predicts, among other things, that the number of areas and the soma radius increase as a function of gray matter volume to the power of 1/3 and 1/9, respectively, and empirical support is demonstrated for each. Also, the scaling relationships imply that, although the percentage of the total number of neurons to which a neuron connects falls as a function of gray matter volume with exponent −1/3, the network diameter of the neocortex is invariant at around two. Finally, I discuss how a similar approach may have promise in explaining the scaling relationships for the brain and other organs as a function of body mass. Received: 23 December 1999 / Accepted in revised form: 2 August 2000  相似文献   

9.
Alzheimer''s disease (AD) is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ) in brain and retina. Because bone marrow transplantation (BMT) results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt) mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively) in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4%) compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.  相似文献   

10.
The entorhinal cortex (EC) is one of the earliest affected, most vulnerable brain regions in Alzheimer's disease (AD), which is associated with amyloid-β (Aβ) accumulation in many brain areas. Selective overexpression of mutant amyloid precursor protein (APP) predominantly in layer II/III neurons of the EC caused cognitive and behavioral abnormalities characteristic of mouse models with widespread neuronal APP overexpression, including hyperactivity, disinhibition, and spatial learning and memory deficits. APP/Aβ overexpression in the EC elicited abnormalities in synaptic functions and activity-related molecules in the dentate gyrus and CA1 and epileptiform activity in parietal cortex. Soluble Aβ was observed in the dentate gyrus, and Aβ deposits in the hippocampus were localized to perforant pathway terminal fields. Thus, APP/Aβ expression in EC neurons causes transsynaptic deficits that could initiate the cortical-hippocampal network dysfunction in mouse models and human patients with AD.  相似文献   

11.
The aim of the study was: (1) to test the suitability of neurofilament (NF) immunohistochemistry for representing the shapes of morphologically defined neuron types in the pig ileum myenteric plexus, (2) to estimate the proportions of these neuron types as related to the whole myenteric neuron population and (3) to demonstrate the usefulness of a refined morphological classification of enteric neurons on the paradigm of calcitonin gene-related peptide (CGRP)-immunoreactive neurons. So far, immunoreactivity for this peptide was supposed to be present in the pig enteric nervous system only in type II neurons. Ileal whole mounts of two pigs were stained with the cuprolinic blue (CB) method and, thereafter, incubated with an antibody pool against NF proteins (70, 160 and 210 kDa), visualised with a fluorochrome-tagged secondary antibody. The structural representation of morphologically defined myenteric neuron types typical for pig ileum (Stach I, II, IV, V and VI) was equivalent to their silver impregnated image, as demonstrated in previous studies. Counts of CB-stained neurons revealed between 2,526 and 2,662 neurons per square centimetre in one pig and between 2,027 and 2,763 in the other. As related to these total neuron numbers, the proportions of type I neurons were 1.7% and 1.5%, of type II neurons 7.2% and 7.9%, of type IV neurons 1.9% and 2.4%, of type V neurons 1.1% and 1.5%, and of type VI neurons 1.3% each. These values are generally comparable with those estimated earlier on silver impregnated material. Double labelling for NF and CGRP indicated that CGRP-immunoreactive smooth contoured neurons with long processes could be subdivided into two distinct morphological neuron types, i.e. type II and type V. We conclude that NF immunohistochemistry is an appropriate tool for representation of morphologically defined enteric neuron types in the pig. Combination of this technique with immunohistochemistry for neuroactive substances may be useful for making both morphological and chemical classification schemes mutually more precise.  相似文献   

12.
The control of neuronal number is critical for coordinating innervation and target organ requirements. Although basic fibroblast growth factor (bFGF) is known to regulate neuron number in the developing embryonic cortex, its potential role during postnatal brain development remains undefined. To address this issue, the cerebellum, a site of postnatal neurogenesis, was used. Previously, we found that a single peripheral injection of bFGF in newborn rats elicited mitosis of neuronal precursors in the external germinal layer (EGL) 8 h after administration. We now define the sustained effects of bFGF treatment on postnatal granule cell production and cerebellar growth. Seventy-two h after a single injection of bFGF (20 ng/g) in newborn rats, the fraction of BrdU-labeled cells in the EGL increased by 46% without altering apoptotic cell number, consistent with enhanced precursor proliferation. Moreover, bFGF increased mitotically labeled cells by 100% and total cell density by 33% in the internal granular layer (IGL), the final destination of the EGL precursors. Because cerebellar volume also increased by 22%, bFGF-induced proliferation enhanced generation of total IGL neurons and increased cerebellar growth. These morphometric measures were corroborated independently by using DNA quantitation: cerebellar DNA content increased 16% after bFGF injection, consistent with increased neuron number. Furthermore, using DNA quantitation as an index, increased total cerebellar cell number elicited by bFGF injection persisted beyond the neurogenetic period, until P35. We conclude that a single postnatal injection of bFGF increases granule neuron number and enhances cerebellar growth following mitotic stimulation.  相似文献   

13.
To incorporate variation of neuron shape in neural models, we developed a method of generating a population of realistically shaped neurons. Parameters that characterize a neuron include soma diameters, distances to branch points, fiber diameters, and overall dendritic tree shape and size. Experimentally measured distributions provide a means of treating these morphological parameters as stochastic variables in an algorithm for production of neurons. Stochastically generated neurons shapes were used in a model of hippocampal dentate gyrus granule cells. A large part of the variation of whole neuron input resistance RN is due to variation in shape. Membrane resistivity Rm computed from RN varies accordingly. Statistics of responses to synaptic activation were computed for different dendritic shapes. Magnitude of response variation depended on synapse location, measurement site, and attribute of response.  相似文献   

14.
It is well known that tau is a good in vitro substrate for Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). However, it is not clear at present whether CaM kinase II phosphorylates tau in vivo or not. Serine 416, numbered according to the longest human tau isoform, has been reported to be one of the major phosphorylation sites by CaM kinase II in vitro. In this study, we produced a specific antibody against tau phosphorylated at serine 416 (PS416-tau). Immunoblot analysis revealed that the antibody reacted with tau in the rat brain extract which was prepared in the presence of protein phosphatase inhibitors. Developmental study indicated that serine 416 was strongly phosphorylated at early developmental stages in rat brain. We examined the localization of PS416-tau in primary cultured hippocampal neurons and the immortalized GnRH neurons (GT1-7 cells), which were stably transfected with CaM kinase IIalpha cDNA. Immunostaining of these cells indicated that tau was phosphorylated mainly in neuronal soma. Interestingly, tau in neuronal soma in Alzheimer's disease (AD) brain was strongly immunostained by the antibody. These results suggest that CaM kinase II is involved in the accumulation of tau in neuronal soma in AD brain.  相似文献   

15.
Epidemiological studies indicate that intellectual activity prevents or delays the onset of Alzheimer's disease (AD). Similarly, cognitive stimulation using environmental enrichment (EE), which increases adult neurogenesis and functional integration of newborn neurons into neural circuits of the hippocampus, protects against memory decline in transgenic mouse models of AD, but the mechanisms involved are poorly understood. To study the therapeutic benefits of cognitive stimulation in AD we examined the effects of EE in hippocampal neurogenesis and memory in a transgenic mouse model of AD expressing the human mutant β-amyloid (Aβ) precursor protein (APP(Sw,Ind)). By using molecular markers of new generated neurons (bromodeoxiuridine, NeuN and doublecortin), we found reduced neurogenesis and decreased dendritic length and projections of doublecortin-expressing cells of the dentate gyrus in young APP(Sw,Ind) transgenic mice. Moreover, we detected a lower number of mature neurons (NeuN positive) in the granular cell layer and a reduced volume of the dentate gyrus that could be due to a sustained decrease in the incorporation of new generated neurons. We found that short-term EE for 7 weeks efficiently ameliorates early hippocampal-dependent spatial learning and memory deficits in APP(Sw,Ind) transgenic mice. The cognitive benefits of enrichment in APP(Sw,Ind) transgenic mice were associated with increased number, dendritic length and projections to the CA3 region of the most mature adult newborn neurons. By contrast, Aβ levels and the total number of neurons in the dentate gyrus were unchanged by EE in APP(Sw,Ind) mice. These results suggest that promoting the survival and maturation of adult generated newborn neurons in the hippocampus may contribute to cognitive benefits in AD mouse models.  相似文献   

16.
Midshipman fish, Porichthys notatus, have two male reproductive morphs: type I males generate long duration advertisement calls (“hums”) to attract females to a nest; type II males sneak-spawn and, like females, do not produce mate calls but generate short duration agonistic calls. A vocal pacemaker circuit includes: motoneurons in the caudal brain stem and rostral spinal cord that innervate vocal/sonic muscles; pacemaker neurons that are located ventrolateral to motoneurons and establish their fundamental discharge frequency; and a ventral medullary nucleus that couples the motoneuron-pacemaker circuit bilaterally. Transneuronal biocytin transport identified morph-specific developmental trajectories for the vocal circuit. Among nonreproductive, juvenile type I males, motoneuron soma size and motor nucleus volume increase most during a stage prior to sexual maturation. An additional increase in motoneuron size and nucleus volume is coupled to the greatest increase in pacemaker soma size at a stage coincident with the onset of sexual maturity; ventral medullary neurons show similar growth increments during both stages. Type II males (and females) mature with no or little change in cell size or motor nucleus volume. The results indicate that alternative mating tactics are paralleled by alternative developmental trajectories for the neurons that determine tactic-specific behaviors, in this case vocalizations. Together with aging data based on otolith growth, the results support the hypothesis that alternative male morphs in midshipman fish adopt nonsequential, mutually exclusive life history tactics. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
An immunocytochemical method that localizes GABA in glutaraldehyde-fixed tissue has been applied to the study of the Xenopus embryo spinal cord. This procedure stained an anatomical class of neuron, which had somata forming two more or less continuous rows, one on either side of the central canal, in the ventral part of the spinal cord. The total number of stained neurons in the stage 37-38 embryo spinal cord was about 300. The medial surface on the soma protruded into the central canal and had a brush border which electron microscope studies showed to consist of many microvilli or stereocilia and one or two cilia. The external end of the neuron soma had an ipsilateral ascending axon. The axon of many of these neurons had a growth cone which was also clearly stained. We propose calling these neurons 'Kolmer-Agduhr cells' after W. Kolmer and E. Agduhr who described them in the spinal cords of many vertebrate classes. Their early embryonic origin, GABA-like immunoreactivity, axonal projections and distribution as a whole population have not previously been known.  相似文献   

18.
The ability of the soma of a spinal dorsal horn neuron, a spinal ventral horn neuron (presumably a motoneuron), and a hippocampal pyramidal neuron to generate action potentials was studied using patch-clamp recordings from rat spinal cord slices, the "entire soma isolation" method, and computer simulations. By comparing original recordings from an isolated soma of a dorsal horn neuron with simulated responses, it was shown that computer models can be adequate for the study of somatic excitability. The modeled somata of both spinal neurons were unable to generate action potentials, showing only passive and local responses to current injections. A four- to eightfold increase in the original density of Na(+) channels was necessary to make the modeled somata of both spinal neurons excitable. In contrast to spinal neurons, the modeled soma of the hippocampal pyramidal neuron generated spikes with an overshoot of +9 mV. It is concluded that the somata of spinal neurons cannot generate action potentials and seem to resist their propagation from the axon to dendrites. In contrast, the soma of the hippocampal pyramidal neuron is able to generate spikes. It cannot initiate action potentials in the intact neurons, but it can support their back-propagation from the axon initial segment to dendrites.  相似文献   

19.
Two types of medium to large sized neurons are present in the granular layer of the mouse cerebellum. One type has a large nucleus with a prominent nucleolus and a moderate amount of cytoplasm containing Nissl substance. This type corresponds to the classical Golgi II neuron. The second type has a much smaller nucleus (mean diameter 8.4 microns) with a darkly staining nuclear envelope which is almost invariably deeply indented by cytoplasmic intrusions. The nucleolus is smaller and less conspicuous than in Golgi II neurons. These neurons are identical to the pale cells described by Altman and Bayer (1977). The numbers of both types of neuron were estimated in the spinocerebellum, lobus simplex and nodulus in mice aged 6, 15, 22, 25, 28 and 31 months. There was no significant variation in the number of either Golgi II neurons or pale cells with age in any part of the cerebellum. The number of Golgi II neurons per mm3 was similar in all parts of the cerebellum (mean 3560 mm3). This was identical to the mean number of pale cells per mm3 in the spinocerebellum and pontocerebellum but in the nodulus pale cells were much more numerous (mean 41,170 per mm3). It is postulated that pale cells are small Golgi II neurons.  相似文献   

20.
Only male zebra finches (Poephila guttata) sing, and nuclei implicated in song behavior exhibit marked sex differences in neuron number. In the robust nucleus of the anterior neostriatum (RA), these sex differences develop because more neurons die in young females than in males. However, it is not known whether the sexually dimorphic survival of RA neurons is a primary event in sexual differentiation or a secondary response to sex differences in the number of cells interacting trophically with RA neurons. In particular, since sexual differentiation of the RA parallels the development of dimorphisms in the numbers of neurons providing afferent input from the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the high vocal center (HVC), it has been hypothesized that sex differences in the size of these afferent populations trigger differential RA neuron survival and growth. To test this hypothesis, we lesioned either the lMAN or both the lMAN and HVC unilaterally in 12-day-old male and female zebra finches. Subsequently, RA cell death and RA neuron number and size were measured. Unilateral lMAN lesions increased cell death and decreased neuron number and size within the ipsilateral RA of both sexes. However, even in the lMAN-lesioned hemisphere, these effects were less pronounced in males than in females, so that by day 25 the volume, number, and size of neurons were sexually dimorphic in both the contralateral and ipsilateral RA. Similarly, the absence of both lMAN and HVC afferents did not prevent the emergence of sex differences in the number and size of RA neurons by 25 day posthatching. We conclude that these sex differences within the RA are not a secondary response to dimorphisms in the numbers of lMAN or HVC neurons providing afferent input. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号