首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-molecular-weight form of acrosin (alpha-acrosin, EC 3.4.21.10) was extracted from spermatozoa obtained from frozen semen and purified over 300-fold. Purification was effected by sequential use of Sephadex G-150, CM-cellulose and DEAE-cellulose chromatography. Properties of human acrosin were compared with those of human pancreatic trypsin. The molecular weight (Mr) of acrosin (70000) was greater than that of trypsin (Mr 21000). Isoelectric points for acrosin (pI = 9.0) and trypsin (pI = 8.2) were also different. alpha-N-Benzoyl-L-arginine ethyl ester was hydrolysed 50% more rapidly by acrosin than by trypsin. Acrosin had similar kcat. values for the hydrolysis of esters with different acylating groups (i.e. benzoyl-L-arginine and p-tosyl-L-arginine esters). In contrast, trypsin had dissimilar kcat. values for the hydrolysis of esters with different acylating groups. Kinetic data argue against deacylation as the rate-limiting step in ester hydrolysis by acrosin. Acrosin was less sensitive than trypsin to inhibition by 7-amino-1-chloro-3-L-tosylamidoheptan-2-one ('TLCK'), di-isopropyl fluorophosphate and soya-bean trypsin inhibitor. D-Fructose and D-arabinose inhibited acrosin, but had no effect on trypsin. The data indicate that definite differences exist between human acrosin and trypsin.  相似文献   

2.
Acrosin has been purified from human sperm cells by two alternative procedures which give purer products and in higher yields than could be achieved previously. The products were characterized by their molecular weight, catalytic action, sensitivity to inhibitors, and reaction with a polyclonal anti-acrosin antibody. After acid extraction of the cells, one method involves removal of acrosin inhibitors by vacuum dialysis, followed by affinity chromatography on a soybean trypsin inhibitor (SBTI) column, and therefore requires that the acrosin be in an active form capable of binding to the inhibitor. The other method involves affinity chromatography on a column of a monoclonal anti-acrosin antibody (MAb) and can be used to provide either active or proenzyme forms of acrosin, by choice of extraction conditions and inclusion of appropriate inhibitors. The yield of human acrosin from the SBTI method was 104% and from the MAb column was 75%. It is hoped that these procedures will make the very scarce human acrosin more readily available for further study.  相似文献   

3.
Acrosin is thought to fulfill several different roles in fertilization including that of a serine protease and in secondary zona pellucida (ZP) binding. However, acrosin's importance as a fertilization protein has been questioned. Especially since it was discovered that acrosin knockout mice are fertile. In this study, we explored the sites involved in serine protease activity and secondary binding. We also assessed conservation in functional sites across species and examined whether amino acid changes present in the human population have the potential to affect fertility. In addition, since many mammalian reproduction proteins have been found to evolve rapidly, we tested for positive selection. Sequences from 43 mammals from all 19 placental orders, which included a total of 828 nucleotides from acrosin exons 2, 3, 4, and a portion of exon 5, were obtained. We found that all sites of the serine catalytic triad as well as three other sites linked to catalytic activity were completely conserved. Five of six sites proposed to play a role in secondary binding were 100% conserved as basic residues. These results support an evolutionary conserved role for acrosin as a serine protease and secondary binding protein across placental mammals. We found statistically significant support for positive selection within acrosin, but no single amino acid site reached the significance level of P > 0.95 for inclusion within the category omega > 1. Based upon two amino acid mutation scoring systems, three out of seven human residue changing single nucleotide polymorphisms (SNPs) were found to be potentially protein-altering mutations.  相似文献   

4.
1. Titration in sodium barbiturate buffer of acrosin, a serine proteinase from sperm acrosomes, with the ester substrate 4-methylumbelliferyl p-guanidinobenzoate gave rise to an incomplete 'burst' of 4-methylumbelliferone. Studies of the effects on the reaction of activators of acrosin (Ca2+, water-miscible solvents) showed that titrations carried out in barbiturate buffer containing 1M-CaCl2 and diluted with 0.2 vol. of dimethylsulphoxide produced a rapid quantitative burst within 4 min at 20 degrees C. 2. The net post-burst production of 4-methylumbelliferone was neglibible because (a) the acyl-enzyme was very stable, and (b) the slow post-burst formation of 4-methylumbelliferone (turnover of acyl-enzyme) was virtually equal to the slow photolytic destruction of 4-methylumbelliferone that was liberated during the burst. 3. The standard procedure permits titrations of 20-100pmol of acrosin, i.e. amounts normally taken for conventional rate assays, and with these amounts the impurities present in crude enzme fractions did not interfere. The burst was judged to be quantitative on the basis of comparisons with titrations of acrosin with p-nitrophenyl p'-quanidinobenzoate. 4. The burst reaction of trypsin with the 4-methylumbelliferyl ester was inhibited by high Ca2+ concentrations and by dimethyl sulphoxide. 5. The association and dissociation of complexes of both acrosin and trypsin with protein-type inhibitors (Kunitz pancreatic trypsin inhibitor and a spermatozoal acrosin inhibitor) are rather slow. It is thus possible, in certain cases, to use the ester to titrate both total enzyme in an inhibitor-enzyme mixture and net enzyme, i.e. the stoicheiometric excess of enzyme over inhibitor.  相似文献   

5.
The inhibitory effect of the clinically used p-carbethoxyphenyl ester of epsilon-guanidino-caproic acid methanesulphonate (epsilon-GCA-CEP) on the catalytic properties of human LYS77-plasmin (EC 3.4.21.7), bovine factor Xa (EC 3.4.21.6), bovine alpha-thrombin (EC 3.4.21.5), ancrod (EC 3.4.21.28), crotalase (EC 3.4.21.30), bovine beta-trypsin (EC 3.4.21.4), porcine pancreatic beta-kallikrein-B (EC 3.4.21.35), human urinary kallikrein (EC 3.4.21.35) and the Mr 54,000 species of human urokinase (EC 3.4.21.31) was investigated (between pH 2.0 and 8.5, I = 0.1 M; T = 21 +/- 0.5 degrees C), and analyzed in parallel with that of the homologous derivative p-carbethoxyphenyl epsilon-amino-caproate hydro chloride (epsilon-ACA-CEP). On lowering the pH from 5.5 to 3.0, values of the apparent dissociation inhibition constant (Ki) for epsilon-GCA-CEP and epsilon-ACA-CEP interaction with the serine proteinases considered increase, reflecting the acidic pK-shift upon inhibitor binding of a single ionizing group. Over the whole pH range explored, (i) epsilon-GCA-CEP interacts with bovine factor Xa and bovine alpha-thrombin with an higher affinity than that observed for epsilon-ACA-CEP binding; (ii) both inhibitors associate to bovine beta-trypsin with the same affinity; and (iii) epsilon-ACA-CEP inhibits human Lys77-plasmin and the Mr 54,000 species of human urokinase with an higher affinity than that reported for epsilon-GCA-CEP association, thus reflecting the known enzyme primary specificity properties. However, the affinity of epsilon-ACA-CEP for ancrod, crotalase, porcine pancreatic beta-kallikrein-B and human urinary kallikrein, all of which preferably bind arginyl rather than lysyl side chains at the primary position of substrates and/or inhibitors, is paradoxically higher than that displayed by epsilon-GCA-CEP. By considering the amino acid sequences, the X-ray three-dimensional structures and/or the computer-generated molecular models of serine proteinase: inhibitor adducts, the observed binding behaviour of epsilon-GCA-CEP and epsilon-ACA-CEP to the enzymes considered has been related to the inferred stereochemistry of proteinase: inhibitor contact region(s).  相似文献   

6.
The inhibition of acrosin by sterol sulphates   总被引:1,自引:0,他引:1  
Four 3 beta-hydroxy-delta 5-steroid sulphates were found to be potent and specific inhibitors of the sperm acrosomal proteinase, acrosin. Two of these acrosin inhibitors, desmosteryl sulphate and cholesteryl sulphate, occur naturally in spermatozoa. Desmosteryl sulphate, an inhibitor of the in-vitro capacitation of hamster spermatozoa, has a Ki of 3.5 x 10(-6) M for the inhibition of acrosin. The mechanism of inhibition of sperm capacitation by sterol sulphates is probably due to their inhibition of acrosin.  相似文献   

7.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

8.
When denuded ram spermatozoa were suspended in weakly buffered 0.25M sucrose, the acrosin remained bound to the acrosomal membranes of the sperm heads. Media containing CaCl2 caused complete solubilization of the enzyme. Effects of acrosin inhibitors on soluble and bound enzyme were studied in Tris HCl(pH 8.2) containing sucrose. Denuded spermatozoa were used as a preparation of bound acrosin. Trasylol (Kunitz basic pancreatic trypsin inhibitor) acted more strongly on bound scrosin than on soluble acrosin, but soya-bean trypsin inhibitor acted more strongly on soluble acrosin. At concentrations 0.5 - 2.0muM, the inhibitors isolated from ram acrosomes and from ram seminal plasma inhibited soluble acrosin but had negligible effects on bound acrosin. However, bound acrosin was sensitive to high concentrations of the acrosomal inhibitor. The two forms of acrosin were inhibited to about the same degree by p-aminobenzamidine and also by Tos-Lys-CH2Cl. It is proposed that membrane-bound acrosin is the form that functions in penetration of the zona pellucida, and that a role for acrosin inhibitors is suppression of an antifertility effect of soluble acrosin on mammalian eggs. This hypothesis is supported by 1) the results of work on the impaired fertilizing capacity of rabbit spermatozoa that have been treated with acrosin inhibitors, 2) the anti-fertility effects on hamster eggs of solutions of acrosin and of bovine trypsin, and 3) the results in this paper.  相似文献   

9.
Twenty-two synthetic proteinase inhibitors were tested for their inhibitory properties towards human acrosin. p-Nitrophenyl-p1-guanidino benzoate (NPGB) was the most effective (K1 value of 1-5 X 10(-8) M), producing a non-competitive type of inhibition in contrast to all other inhibitors which showed a competitive type of inhibition. The Michaelis constant for human acrosin on BAEE at pH 8-1 was calculated to be 4-25 X 10(-5) M.  相似文献   

10.
A low molecular mass, naturally occurring acrosin inhibitor has been identified and purified (490-7-fold) from human semen, and kinetic studies have been performed on the association characteristics as well as for the determination of affinity constants (K i values). The results show thatK i value (3.34 × 10−2) of the inhibitor towards human acrosin is almost three times lower than that of pancreatic trypsin, indicating a much higher specificity and inhibitory property for acrosin. The purified human seminal acrosin inhibitor has a molecular mass of 5.5 kDa and shows a single band using 10–20% gradient SDS PAGE. The work is of great significance for the development of more specific, nontoxic and irreversible inhibitors for human acrosin.  相似文献   

11.
Dramatic inhibition of trypsin activity by rat caltrin and guinea pig caltrin I was spectrophotometrically demonstrated using the artificial substrate benzoylarginyl ethyl ester. Approximately 6% and 21% of residual proteolytic activity was recorded after preincubating the enzyme with 0.22 and 0.27 microM rat caltrin and guinea pig caltrin I, respectively. Reduction and carboxymethylation of the cysteine residues abolished the inhibitor activity of both caltrin proteins. Rat caltrin and guinea pig caltrin I show structural homology with secretory trypsin/acrosin inhibitor proteins isolated from boar and human seminal plasma and mouse seminal vesicle secretion and share a fragment of 13 amino acids of almost identical sequence (DPVCGTDGH/K/ITYG/AN), which is also present in the structure of Kazal-type trypsin inhibitor proteins from different mammalian tissues. Bovine, mouse, and guinea pig caltrin II, three caltrin proteins that have no structural homology with rat caltrin or guinea pig caltrin I, lack trypsin inhibitor activity. Rat caltrin, guinea pig caltrin I, and the mouse seminal vesicle trypsin inhibitor protein P12, which also inhibits Ca(2+) uptake into epididymal spermatozoa (mouse caltrin I), bound specifically to the sperm head, on the acrosomal region, as detected by indirect immunofluorescence. They also inhibited the acrosin activity in the gelatin film assay. Caltrin I may play an important role in the control of sperm functions such as Ca(2+) influx in the acrosome reaction and activation of acrosin and other serine-proteases at the proper site and proper time to ensure successful fertilization.  相似文献   

12.
《Plant science》1987,52(3):153-157
Sucrose synthase (EC 2.4.1.13) was purified to homogeneity from developing maize (Zea mays L.) endosperm. Substrate saturation and inhibitor kinetics were examined for the sucrose synthase reaction. The Km-values for fructose and uridine diphosphate glucose (UDPGlc) were estimated to be 7.8 mM and 76 μM, respectively. Fructose concentrations over 20 mM inhibited sucrose synthase in an uncompetitive manner with respect to UDPGlc. Glucose was also found to be an uncompetitive inhibitor with respect to both fructose and UDPGlc. At inhibitory concentrations of fructose, the apparent Ki for glucose increased linearly with increasing fructose concentration. The results suggest an ordered kinetic mechanism for sucrose synthase where UDPGlc binds first and UDP dissociates last. Fructose and glucose both inhibit by binding to the enzyme-UDP complex. Fructose and glucose, which are present in maize endosperm as the products of invertase, could inhibit sucrose synthase, especially in basal regions of the kernel where hexosesmay accumulate.  相似文献   

13.
Rat liver 'glucokinase' (hexokinase D) catalyses the phosphorylation of fructose with a maximal velocity about 2.5-fold higher than that for the phosphorylation of glucose. The saturation function is hyperbolic and the half-saturation concentration is about 300 mM. Fructose is a competitive inhibitor of the phosphorylation of glucose with a Ki of 107 mM. Fructose protects hexokinase D against inactivation by 5,5'-dithiobis-(2-nitrobenzoic acid), and the apparent dissociation constants are about 300 mM in the presence of different concentrations of the inhibitor. The co-operativity of the enzyme in the phosphorylation of glucose can be abolished by addition of fructose to the reaction medium. Fructose appears to be no better as a substrate for the other mammalian hexokinases than it is for hexokinase D. It is proposed that the name 'glucokinase' ought to be reserved for enzymes that are truly specific for glucose, such as those of micro-organisms and invertebrates, and that liver glucokinase must be called hexokinase D (or hexokinase IV) within the classification EC 2.7.1.1.  相似文献   

14.
The sperm-specific proteinase acrosin (EC 3.4.21.10) is found in spermatozoa as a zymogen. We have looked for different forms of this zymogen in testicular, epididymal, and ejaculated spermatozoa from ram and have compared total sperm extracts made immediately after cell disruption with extracts made later from isolated sperm heads. We have concluded that the autoactivatable zymogen form, known generally as proacrosin, is the only form of acrosin within intact mature ram spermatozoa; no other zymogen form was detected, although lower levels of proacrosin were found in some samples of testicular spermatozoa. From studies of the activation process, it appears that ram proacrosin is truly autoactivatable; no evidence could be found for the involvement of any auxiliary enzyme. Estimations of the molecular weight of proacrosin using gel chromatography (60,000) and SDS-polyacrylamide gel electrophoresis (51,300) indicated that the zymogen is monomeric. Comparison with the molecular weight of ram acrosin (44,000 or 40,000, using the two respective methods) indicated that a single acrosin molecule is derived from each zymogen molecule. The sperm acrosin inhibitor (molecular weight 11,000 or 8,000) was present in testicular spermatozoa as well as in ejaculated spermatozoa; there was no evidence that it was produced as a result of zymogen activation.  相似文献   

15.
Further evidence is presented that the acrosomal proteinase acrosin exists as a zymogen precursor in freshly ejaculated boar spermatozoa. Autoactivation of proacrosin to acrosin takes place optimally at slightly alkaline pH and in the presence of calcium ions. Activation is considerably accelerated by catalytic amounts of trypsin or highly purified acrosin. A significant acceleration of the activation is also achieved by porcine pancreatic and urinary kallikrein, whereas chymotrypsin, plasmin, thrombin or urokinase showed no effect. Activation can be inhibited by p-amino-benzamidine and p-nitrophenyl p'-guanidino-benzoate. Electrophoretic analysis at different stages of activation revealed that during this process various molecular forms of acrosin are produced, apparently by limited proteolysis.  相似文献   

16.
1. Incubation of isolated hepatocytes with fructose at concentrations above 3 mM resulted in an apparent inhibition of pyruvate kinase assayed in crude extracts at sub-optimal phosphoenolpyruvate concentrations. 2. Fructose at concentrations below 3 mM caused an activation of the enzyme. 3. Increases in the hepatocyte contents of the positive effectors fructose 1.6-bisphosphate and fructose 1-phosphate were found at all concentrations of fructose up to 10mM. 4. Removal of the extrahepatocyte medium from the hepatocytes by washing resulted in an activation of the enzyme at all concentrations of fructose examined. 5. Inhibitors of the enzyme were shown to accumulate in the hepatocytes despite the depletion of ATP (a known negative effector) caused by higher concentrations of fructose. Indeed the inhibition of pyruvate kinase appeared to be correlated to the depletion of ATP. 6. Alanine (a known inhibitor) was shown to accumulate in hepatocytes as a consequence of incubation with fructose. 7. Allantoin and uric acid were shown to be inhibitors of a partially purified pyruvate kinase preparation assayed both in the presence and in the absence of fructose 1.6-bisphosphate. 8. Allantoin, but not uric acid, accumulated in the extrahepatocyte medium as a result of incubation of the cells with 10 mM-fructose.  相似文献   

17.
A major inhibitor of acrosin in rhesus monkey and rabbit oviduct fluid, isolated by isoelectrofocusing in sucrose gradients, displayed a broad peak in the acidic region of the column and was demonstrated to contain secretory IgA specific for acrosin. Its identity was established by immunodiffusion, by the removal of acrosin inhibition with antisera to IgA (α-chain), and by its correct molecular weight during ultracentrifugation. Purified human serum IgA also inhibited rabbit, rhesus monkey, and human acrosins, but neither purified human IgG nor IgM had any inhibitory effect on these acrosins. Neither oviduct fluid secretory IgA nor purified human serum IgA inhibited the activity of bovine pancreatic trypsin. The high specificity of secretory IgA for acrosin and its presence in every rabbit and rhesus monkey oviduct fluid specimen examined suggests a possible regulatory role for this antibody in reproduction.  相似文献   

18.
C F Hawkins  A S Bagnara 《Biochemistry》1987,26(7):1982-1987
The reaction catalyzed by adenosine kinase purified from human erythrocytes proceeds via a classical ordered sequential mechanism in which adenosine is the first substrate to bind to and AMP is the last product to dissociate from the enzyme. However, the interpretation of the steady-state kinetic data is complicated by the finding that while AMP acts as a classical product inhibitor at concentrations greater than 5 mM, at lower concentrations AMP can act as an apparent activator of the enzyme under certain conditions. This apparent activation by AMP is proposed to be due to AMP allowing the enzyme mechanism to proceed via an alternative reaction pathway that avoids substrate inhibition by adenosine. Quantitative studies of the protection of the enzyme afforded by adenosine against both spontaneous and 5,5'-dithiobis(2-nitrobenzoic acid)-mediated oxidation of thiol groups yielded "protection" constants (equivalent to enzyme-adenosine dissociation constant) of 12.8 microM and 12.6 microM, respectively, values that are more than an order of magnitude greater than the dissociation constant (Kia = 0.53 microM) for the "catalytic" enzyme-adenosine complex. These results suggest that adenosine kinase has at least two adenosine binding sites, one at the catalytic center and another quite distinct site at which binding of adenosine protects the reactive thiol group(s). This "protection" site appears to be separate from the nucleoside triphosphate binding site, and it also appears to be the site that is responsible for the substrate inhibition caused by adenosine.  相似文献   

19.
The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the bovine basic pancreatic trypsin inhibitor (BPTI, Kunitz inhibitor) to the 33,000 Mr and 54,000 Mr species of human urokinase (EC 3.4.21.31) has been investigated. Under all the experimental conditions, values of Ka for BPTI binding to the 33,000 Mr and 54,000 Mr species of human urokinase are identical. On lowering the pH from 9.5 to 4.5, values of Ka (at 21.0 degrees C) for BPTI binding to human urokinase (33,000 Mr and 54,000 Mr species) decrease thus reflecting the acidic pK-shift of the His-57 catalytic residue from 6.9, in the free enzyme, to 5.1, in the proteinase:inhibitor complex. At pH 8.0, values of the apparent thermodynamic parameters for BPTI binding to human urokinase (33,000 Mr and 54,000 Mr species) are: Ka = 4.9 x 10(4) M-1, delta G degree = -6.3 kcal/mol, and delta S degree = -37 entropy units (all at 21.0 degrees C); and delta H degree = +4.6 kcal/mol (temperature independent over the explored range, from 5.0 degrees C to 45.0 degrees C). Thermodynamics of BPTI binding to human urokinase (33,000 Mr and 54,000 Mr species) have been analyzed in parallel with those of related serine (pro)enzyme Kazal- and /Kunitz-type inhibitor systems. Considering the known molecular models, the observed binding behaviour of BPTI to human urokinase (33,000 Mr and 54,000 Mr species) was related to the inferred stereochemistry of the proteinase/inhibitor contact region.  相似文献   

20.
Abstract

The inhibitory effect of the clinically used p-carbethoxyphenyl ester of ?-guanidino-caproic acid metha-nesulphonate (?-GCA-CEP) on the catalytic properties of human LYS77-plasmin (EC 3.4.21.7), bovine factor Xa (EC 3.4.21.6), bovine α-thrombin (EC 3.4.21.5), ancrod (EC 3.4.21.28), crotalase (EC 3.4.21.30), bovine β-trypsin (EC 3.4.21.4), porcine pancreatic β-kallikrein-B (EC 3.4.21.39, human urinary kallikrein (EC 3.4.21.35) and the Mr 54,000 species of human urokinase (EC 3.4.21.31) was investigated (between pH 2.0 and 8.5, I = 0.1 M;T = 21 ? 0.5?C), and analyzed in parallel with that of the homologous derivative p-carbethoxyphenyl ?-amino-caproate hydro chloride (?-ACA-CEP). On lowering the pH from 5.5 to 3.0, values of the apparent dissociation inhibition constant (Ki) for ?-GCA. CEP and ?-ACA-CEP interaction with the serine proteinases considered increase, reflecting the acidic pK-shift upon inhibitor binding of a single ionizing group. Over the whole pH range explored, (i) ?-GCA-CEP interacts with bovine factor Xa and bovine α-thrombin with an higher affinity than that observed for ?-ACA-CEP binding; (ii) both inhibitors associate to bovine β-trypsin with the same affinity; and (iii) ?-ACA-CEP inhibits human Lys77-plasmin and the Mr 54,000 species of human urokinase with an higher affinity than that reported for ?-GCA-CEP association, thus reflecting the known enzyme primary specificity properties. However, the affinity of ?-ACA-CEP for ancrod, crotalase, porcine pancreatic β-kallikrein-B and human urinary kallikrein, all of which preferably bind arginyl rather than lysyl side chains at the primary position of substrates and/or inhibitors, is paradoxically higher than that displayed by ?-GCA-CEP. By considering the amino acid sequences, the X-ray three-dimensional structures and/or the computer-generated molecular models of serine proteinase: inhibitor adducts, the observed binding behaviour of ?-GCA-CEP and ?-ACA-CEP to the enzymes considered has been related to the inferred stereochemistry of proteinase: inhibitor contact region(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号