首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of embryo sac before and after fertilization, embryo and endosperm development and transfer cell distribution in Phaseolus radiatus were investigated using light and transmission electron microscopy. The synergids with distinct filiform apparatus have a chalazal vacuole, numerous mitochondria and ribosomes. A cell wall exists only around the micropylar half of the synergids. The egg cell has a chalazally located nucleus, a large micropylar vacuole and several small vacuoles. Mitochondria and plasrids with starch grains are abundant. No cell wall is present at its chalazal end. There are no plasma membranes between the egg and central cell in several places. The zygote has a complete cell wall, abundant mitochondria and plastids containing starch grains. Both degenerated and persistent synergids migh.t serve as a nutrient supplement to proembryo. The wall ingrowths occur in the central cell, basal cell, inner integumentary cells, suspensor cells and endosperm cells. These transfer cells may contribute to embryo nutrition at different developmental stages of embryo.  相似文献   

2.
Ultrastructure of the embryo sac lacking antipodals in prefertilization stages in Arabidopsis thaliana has been examined 2 hr before and 5 hr after manual cross pollination. The cytoplasm of both synergids before fertilization is rich in ribosomes, mitochondria, and rough endoplasmic reticulum, and also contains several microbodies and spherosomes. The filiform apparatus includes electron-dense material and a fibrous part. Many cortical microtubules appear in the filiform apparatus area. One of the two synergids degenerates before fertilization. The synergids, the egg cell, and central cell have a rich cytoskeleton of microtubules; only the synergids appear to contain microfilaments. At the chalazal end, the antipodals are initially present but degenerate by the time of pollination in most embryo sacs in the starchless line studied. The embryo sac is completely surrounded by a wall containing an electron-dense layer, separating it from the nucellus, including the chalazal end. When the antipodals have degenerated, the electron-dense layer disappears at the chalazal end only, and the wall between the central cell and the nucellus is homogeneous. Between the central cell and nucellar cells no plasmodesmata are found. The membranes of both antipodal cells at the chalazal end of the embryo sac appear sinuous, like those of transfer cells. The central cell has plastids preferentially distributed around the nucleus, but the other organelles are randomly distributed. The central cell in the embryo sac and the adjacent chalazal nucellar cells show a transfer-cell function in the embryo sac after the antipodals degenerate.  相似文献   

3.
At maturity, Torenia fournieri(Lind.) has an embryo sac whichprotrudes through the micropyle placing the synergids, egg celland part of the central cell within the ovary locule adjacentto the placenta. The present study utilized this unique attributein combination with confocal and light microscopy to characterizethe timing and associated structural changes during pollinationevents leading to double fertilization. The observation of spermnuclei in living gametophyte tissue is an important advancein the identification, in real time, of stages leading to fertilizationin angiosperms. A continuum of fertilization occurred between12 and 16 h after pollination (hap), with peak frequency ofegg and sperm fusion at 14 hap (43%). Movement of the spermcells through the degenerated synergid took several hours andfusion between sperm and their respective female nuclei occurredsimultaneously. Changes in embryo sac structure were also documented.Cell walls in the region between the synergids and egg cellwere poorly developed prior to pollen tube penetration. Thickenedcell walls were observed around the periphery of the synergidsand egg cell following pollination, and in the central cellwhere it lay within the body of the ovule. Starch was observedin the cells of the embryo sac, although the number and distributionof granules varied before and after pollination. These temporaland spatial observations of the embryo sac inTorenia fournieriprovide a basis for further research to determine control mechanismsoperating during specific double fertilization events in angiosperms.Copyright 2000 Annals of Botany Company Double fertilization, embryo sac, sperm nuclei, Hoechst, Torenia fournieri  相似文献   

4.
水稻受精前后胚囊内钙调素分布的变化:免疫金电镜观察   总被引:6,自引:1,他引:5  
用胶体金免疫电镜技术观察了水稻 (Oryzasativasubsp .japonica)受精前后胚囊内钙调素的分布变化。授粉后 ,卵细胞、助细胞和中央细胞内的钙调素较授粉前均有所增加。中央细胞内钙调素的增加要比卵细胞中约早 2h ,退化助细胞与宿存助细胞之间的钙调素含量无明显差异。授粉到受精期间 ,钙调素的主要分布形式由分散的单颗粒转变为聚集颗粒 ,受精完成后再变为分散的单颗粒形式。胚囊壁及珠心细胞的细胞壁和胞间隙中也观察到钙调素的分布和数量变化。初步讨论了胞内和胞外钙调素在水稻受精与合子形成中的作用。  相似文献   

5.
用胶体金免疫电镜技术观察了水稻(Oryza sativa subsp. japonica)受精前后胚囊内钙调素的分布变化.授粉后,卵细胞、助细胞和中央细胞内的钙调素较授粉前均有所增加.中央细胞内钙调素的增加要比卵细胞中约早2 h,退化助细胞与宿存助细胞之间的钙调素含量无明显差异.授粉到受精期间,钙调素的主要分布形式由分散的单颗粒转变为聚集颗粒,受精完成后再变为分散的单颗粒形式.胚囊壁及珠心细胞的细胞壁和胞间隙中也观察到钙调素的分布和数量变化.初步讨论了胞内和胞外钙调素在水稻受精与合子形成中的作用.  相似文献   

6.
Ultrastructures of the mature embryo sac of Calystegia hederacea Wall. and its changes after fertilization are described. The positional organization of the egg cell, the two synergids and the central cell, as well as their interrelationships were studied. Some regions of the cell boundaries between the egg cell and the central cell, as well as between the egg cell and the synergids were devoid of typical cell wall before fertilization, displayed a feature quite similar to the characteristic absence of the cell wall in the fertilization target zone occurred in most angiosperms. Besides the genera ultrastructural characteristics of the egg apparatus and the central cell, there were several unusual aspects in C. hederacea, such as the egg nucleus located above the large vacuole near the chalazal end of the cell, many polyribosomes in the cytoplasm of the egg cell and wall ingrowths on both sides of the hooks of the central cell. All these unusual characteristics seemed to be closely associated with the short duration of the fertilization and the absence of antipodal cells in the mature embryo sac. It is concluded that the female germ unit of C. hecleracea is considered to be a topographical and physiological unit to realize their functions for successful double fertilization.  相似文献   

7.
No acid phosphatase activity was observed in the mature embryo sac of wheat (Triticum aestivum) except the chalazal cytoplasm Of the central cell before fertilization. During fertilization, acid phosphataseactivity was observed in the following loci: part of chromatin of the egg nucleus and most of the mitochondria in the egg cytoplasm; the perinuclear spaces of the egg and sperm nuclei at the fusion of the egg and sperm nuclei; the chalazal cytoplasm and some vacuoles of the degenerated synergid; two sperm nuclei within the cytoplasm of female cells; the cell wall of each cell of the embryo sac and that of the nucellar cells surrounding the embryo sac. No acid phosphatase was observed in the two-celled proembryo. Dense enzyme reaction product was localized in the chromatin of the free nuclei at early stage of the endosperm. The characteristic of acid phosphatase distribution during fertilization may be associated with the physiological change of the egg Cell, the reorganization of mitochondria in the egg cell cytoplasm, the degeneration of one of the two synergids, the physiological state of the sperm nuclei and the nuclear membrane fusion of the egg and sperm nuclei.  相似文献   

8.
小麦受精过程中酸性磷酸酶的超微细胞化学定位   总被引:6,自引:0,他引:6  
小麦(Triticum aestivum )受精前成熟胚囊,除胚囊中央细胞的合点端细胞质中有酸性磷酸酶外,其余部位均未发现酸性磷酸酶。受精时期,以下部位存在酸性磷酸酶活性:卵细胞的细胞核内一部分染色质和细胞质中大部分线粒体;精、卵核融合时两核的核周腔内;退化助细胞合点端细胞质和一些液泡内;进入雌性细胞中的两个精核;胚囊各成员细胞的细胞壁及胚囊周围珠心细胞的细胞壁。二细胞原胚中未见有酸性磷酸酶。早期胚乳游离核染色质上有酸性磷酸酶。小麦受精过程酸性磷酸酶的分布特点可能与卵细胞生理状态的变化和细胞质中线粒体的改组、助细胞的退化、精核的生理状态以及精核与卵核的核膜融合等有关。  相似文献   

9.
天竺葵雌性生殖单位的超微结构   总被引:4,自引:0,他引:4  
应用透射电镜研究了临近受精时天竺葵(Pelargonium hortorum Bailey)胚囊中的卵细胞、助细胞和中央细胞的结构。证明了卵细胞与助细胞以及助细胞与助细胞之间从合点端至珠孔端有很大的面积以质膜分界,仅珠孔端少部分以壁分隔。卵细胞与中央细胞之间同样缺乏细胞壁。在卵细胞的合点端,两质膜不同程度地分离形成宽窄相间的间隙。在间隙的絮状基质中存在小泡,这些小泡的产生似与卵和中央细胞中周质内质网的活动有关。推测小泡为多糖性质,可能为合子新壁的建造提供物质。卵细胞质中含巨大线粒体,质体和内质网也较丰富。基于超微结构的特征,可认为卵细胞具高度的生理合成活动的潜能。中央细胞极核位于珠孔端与卵器细胞毗邻,有利于在双受精作用中同时发生精细胞与卵细胞和精细胞与中央细胞核的融合。中央细胞的侧壁在珠孔端形成内突,具传递细胞的特点,表明这是雌配子体向孢子体摄取营养的重要部位。助细胞的细胞质含丰富的细胞器,这与多数植物中的相似,但具几个明显的特征,即核中存在微核仁,内质网形成圆球体或脂体,线粒体富集在丝状器的附近。传粉后花粉管进入胚囊之前,两个助细胞中一个退化。  相似文献   

10.
在野外居群调查的启示下,本文以组件观点对柳叶野豌豆复合种和歪头菜幼苗亚单位的时序变化与开花关系进行了分析。结果发现在柳叶野豌豆复合种栽培居群中存在打破物种间形体结构特征的个体,即在复叶由一对小叶组成的植株就已开花而进入生殖时期。另外,在歪头菜的野生居群中发现由三或四枚小叶组成复叶的个体,因此,我们推测这种形体结构的变化可能暗示着柳叶野豌豆复合种和歪头菜有着共同的祖先。  相似文献   

11.
The ultrastructure and composition of the synergids of Capsella bursa-pastoris were studied before and after fertilization. The synergids in the mature embryo sac contain numerous plastids, mitochondria, dictyosomes and masses of ER and associated ribosomes. Each synergid contains a large chalazal vacuole, a nucleus with a single nucleolus and is surrounded by a wall. This wall is thickest at the micropyle end of the cell where it proliferates into the filiform apparatus. At the chalazal end of the cell the wall thins and may be absent for small distances. The pollen tube grows into one of the two synergids through the filiform apparatus and extends one-third the length of the cell before it discharges. Following discharge of the pollen tube, mitochondria and plastids of the tube can be identified in the synergid as can hundreds of 0.5 μ polysaccharide spheres liberated by the tube. The method by which the sperm or sperm nuclei enter the egg or central cell is not known although an apparent rupture was found in the wall of the egg near the tip of the pollen tube. The second synergid changes at the time the pollen tube enters the first synergid. These changes result in the disorganization of the nucleus and loss of the chalazal wall and plasma membrane. Eventually this synergid loses its identity as its cytoplasm merges with that of the central cell.  相似文献   

12.
13.
As part of a study involving pod retention in soybean, Glycinemax (L.) Merr., we investigated changes occurring in the eggapparatus of non-abscised flowers from the time immediatelypreceding fertilization through early embryogeny. Prior to theentry of the pollen tube into the embryo sac, one of the synergidsbegins to degenerate as evidenced by increased electron densityand a loss of volume. This cell serves as the site of entryfor the pollen tube. The cytoplasm of the second, or persistentsynergid, remains unaltered until after fertilization. Bothsynergids contain, in addition to a filiform apparatus, a singleunidentified inclusion of flocculent material located in thechalazal portion of each cell. The zygote can be distinguishedfrom the egg by its consistently narrow wall; and it dividesto form a proembryo, a mass of cells not yet differentiatedinto embryo proper and suspensor. The basal cells of the proembryoare more vacuolate than the apical ones, characteristic of thebasal vacuolation of both egg and zygote. Cells of the proembryoare connected to one another via plasmodesmata, and with theexception of the basal-most cell, are isolated symplasticallyfrom the surrounding endosperm. Wall ingrowths frequently occurin certain cells of the proembryo, notably those cells in contactwith the degenerate synergid and embryo sac wall. At a laterstage of ontogeny, by which time the globular embryo properhas become distinct from the suspensor, the wall ingrowths areconcentrated in the suspensor. Glycine max, soybean, embryogeny, synergids  相似文献   

14.
蓝猪耳(Torenia fournieri L.)胚囊半裸露,在光学显微镜下能清楚观察到卵细胞、助细胞及部分中央细胞的形态结构,有助于原位观察卵细胞在受精前后的变化状态,被认为是研究被子植物体内受精机理的一种模式植物。综述了蓝猪耳的受精机理:花粉管定向进入胚囊的方式与机理、钙在受精过程中的作用、受精前后胚囊细胞骨架的动态变化。简要介绍了离体受精技术在蓝猪耳受精生物学中的发展应用。根据前人对蓝猪耳的研究成果并结合我们的研究,指出蓝猪耳在受精生物学中的应用,特别是借助离体受精技术平台,将具有更大的研究前景。  相似文献   

15.
The development of the egg-apparatus (consisted of an egg cell and two synergids) of rice ( Oryza sativa L. ) was studied at the uhrastructural level. The walls of the egg cell and synergids, immediately after their formation, possessed numerous plasmodesmata. Plasmodesmata were also present on walls between the egg cell and synergids. During the enlargement phase of the egg cell and synergids, the walls at the tip region began to loosen and vesiculate. By the time the embryo sac became mature, the part of the wall of the egg cell and synergids, facing the chalaza, disappeared. Consequently, the tip regions of the egg cell and synergids were only protected by a plasma membrane. When the embryo sac reached full maturity, the upper and middle region of the wall of the synergids broke up into pieces. At that time one synergid began to degenerate. Plasmodesmata persisted at the hook region of the wall of both the egg cell and synergids. Most plastids in the egg cell contained starch grains that persisted throughout the period of the embryo sac development. Starch grains in the plastids of the synergids appeared only before the time when the two polar-nuclei moved into the region above the egg-apparatus. They then disappeared and did not appear again until the embryo sac had reached full maturity. The size and location of the vacuoles in the egg cell were different from those in the synergids. The time of formation was also different. Vacuoles in the egg cell formed late in comparison with the synergids. Vacuoles in the chalazal region of the egg cell (especially at the early stage of the embryo sac development) were much larger than those in the micropylar region. Vacuoles in the synergids tended to concentrate mainly in the chalazal region. There was a peak period of lipid formation in the two synergids. The peak appeared when the embryo sac neared maturity. At the early stage of development, the nuclei of the synergids were elliptical in shape and were situated at the central region near the micropyle. The shape of the nuclei at the late stage of development became less regular and tended to move more towards the micropylar region. Changes in the uhrastructure of the egg cell and synergids of rice appeared to be closely related to the metabolic processes controlling the embryo sac formation and development.  相似文献   

16.
水稻胚囊超微结构的研究   总被引:8,自引:2,他引:8  
水稻(Oryza sativa L.)胚囊成熟时,卵细胞的合点端无细胞壁,核居细胞中部,细胞器集中在核周围,液泡分散于细胞周边区域。助细胞珠孔端有丝状器,合点端无壁,核位于细胞中部贴壁处,细胞器主要分布在珠孔端,液泡主要分布在合点端。开花前不久,一个助细胞退化。中央细胞为大液泡所占,两个极核靠近卵器而部分融合,细胞器集中在极核周围和靠近卵器处,与珠心相接的胚囊壁上有发达的内突。反足细胞多个形成群体,其增殖主要依靠无丝分裂与壁的自由生长,反足细胞含丰富活跃的细胞器,与珠心相接的壁上有发达的内突。开花后6小时双受精已完成,合子和两个助细胞合点端均形成完整壁。合子中开始形成多聚核糖体、液泡减小。退化助细胞含花粉管释放的物质,其合点端迴抱合子。极核已分裂成数个胚乳游离核,中央细胞中细胞器呈活化状态。反足细胞仍在继续增殖。讨论了卵细胞的极性、助细胞的退化、卵器与中央细胞间界壁的变化、反足细胞的分裂特点等问题。  相似文献   

17.
The development of the female gametophyte in Hydrobryum griffithiiis of the Apinagia type. The chalazal megaspore nucleus of thetwo-nucleate embryo sac completely degenerates, and only themicropylar megaspore nucleus contributes to the four nucleipresent in the organized embryo sac. The female gametophyteconsists of two synergids, an egg and a haploid central cell.The latter degenerates before the entry of the pollen tube andthere is only syngamy. The nucellar cells below the embryo sacorganize into a nucellar plasmodium.  相似文献   

18.
向日葵胚囊的超微结构和雌性生殖单位问题   总被引:6,自引:0,他引:6  
本文对向日葵胚囊中卵细胞、助细胞与中央细胞开花前和传粉后的超微结构变化进行了研究。着重报道了不同发育时期这三种细胞之间特定区域的界壁的消长动态。在此基础上结合现有文献资料探讨了由三者共同组成“雌性生殖单位”以适应受精作用的问题。  相似文献   

19.
Fertilization and variation of protein and starch grains in Pulsatilla chinensis (Bung) Regel have been studied at light microscopic level with histochemical test. Based upon the observations, the main conclusions are summarized as follows: The mature pollen grains are two-celled in which the generative cell shows the stronger protein staining than the vegetative cell. And vegetative cells are full of starch garins. When the pollen tube enters into the embryo sac, one synergid is destroyed, or in a few cases synergids are intact. Occasionally two synergids are disorganized as pollen tube penetrates. However, most of the remaining syuergids break down during fertilization, only in a few cases it remains till early stage of embryo development. The contents discharged by the pollen tube consist of two sperms, which stain intensely blue with protein dyes, a great amount of protein and starch grains. Mature female gametophyte (embryo sac) consists of an egg apparatus, central cell, which has a huge secondary nucleus, and antipodal apparatus which retain in course of fertilization. A few of embryo sac contain two sets of egg apparatus, a central cell with two huge secondary nuclei and two sets of antipodal apparatus. In some nucleoli of the central cell the comb-like structure pattern may be detected clearly. There are 1–2 small nucleoli in some egg cells and central cells. All the cells in embryo sac show protein positive reaction. According to the different shades of the color in cells, its may be arranged in the following order: antipodal cells, synergids, central cell and egg cell. Only a few small starch grains are present near nuclei of central cell and egg cell before fertilization, but no starch grains remain in most of the central cell, the synergids and antipodal cells. The fertilization is of the premitotic type. The fusion of the sexual nuclei progresses in the following order: 1, sperms approach and lie on the egg nucleus and secondary nucleus; 2, sperm chromatin sinks themselves into female nucleus, and male nucleolus emerges with the sperm chromosome; and 3, male nucleoli fuse with the nucleoli of egg nucleus and central cell nucleus, and finally forming the zygote and the primary endosperm cells respectively. Nevertheless, as it is well known, the fertilization completes in central cell obviously earlier than that in egg cell. Though it has been explained in cereals and cotton, in Pulsatilla chinensis the main reason is that nucleolar fusion of the male and female nucleoli in egg nucleus is slower than that in secondary nucleus. And the dormancy of the primary endosperm nucleus is shorter than that of the zygote. In the process of fertilization, histochemical changes are considerably obvious in the following three parts: 1, from the begining of fusion of male and female nuclei to form zygote and primary endosperm cell, Protein staining around female nucleus appears to increase gradually; 2, no starch grains are detected in embryo sac. Though only starch grains are carried in by pollen tube, they are completely exhausted during this period; and 3, near completion of fertilization starch grains appear again in zygote, however, not yet in primary endosperm nucleus till its dividing for the first time. The present study reveals that antipodal cells and synergids seem to play a significant role in nutrition of the embryo sac during the fertilization.  相似文献   

20.
扁豆成熟胚囊的超微结构   总被引:7,自引:1,他引:7  
本文对扁豆(Dolichos lablab)成熟胚囊的超微结构进行了研究,在成熟胚囊中,卵细胞和助细胞仅在珠孔端1/3有细胞壁,靠近合点端,卵细胞一助细胞,卵细胞-中央细胞,助细胞-中央细胞之间没有细胞壁存在,相邻细胞的质膜靠在一起,在卵细胞和中央细胞的质膜间,有些地方存在中等电子密度的物质,卵细胞的细胞质中含有很多的线粒体和质体,内质网和高尔基体较少,助细胞的珠孔端有一复杂的丝状器,靠近珠孔端的细胞质中有很多管状的内质网,表明助细胞可能具有分泌功能,在助细胞的合点端,含有丰富的粗糙内质网,助细胞和卵细胞的质膜之间有很多囊泡状的结构,中央细胞内含有丰富的线粒体,高尔基体和内质网,中央细胞的壁向内形成突起,在周缘细胞质中含有丰富的脂滴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号