首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcosmic dental plaques were grown in artificial saliva and supplemented with either milk or fluoridated milk. The presence of fluoride in the milk increased the pH of the biofilms and reduced the proportions of streptococci, demonstrating that in this model, fluoridation of milk produces biofilms with reduced cariogenic potential.  相似文献   

2.

Background

Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms.

Methodology/Principal Findings

Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically.

Conclusions/Significance

OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.  相似文献   

3.
Aims:  To examine the rate and the extent of spore formation in Anoxybacillus flavithermus biofilms and to test the effect of one key variable – temperature – on spore formation.
Methods and Results:  A continuous flow laboratory reactor was used to grow biofilms of the typical dairy thermophile A. flavithermus (strain CM) in skim milk. The reactor was inoculated with either a washed culture or a spore suspension of A. flavithermus CM, and was run over an 8·5 h period at three different temperatures of 48, 55 and 60°C. Change in impedance was used to determine the cell numbers in the milk and on the surface of the stainless steel reactor tubes. The biofilm developed at all three temperatures within 6–8 h. Spores formed at 55 and 60°C and amounted to approx. 10–50% of the biofilm. No spores formed at 48°C.
Conclusions:  The results suggest that both biofilm formation and spore formation of A. flavithermus can occur very rapidly and simultaneously. In addition, temperature variation has a considerable effect on the formation of spores.
Significance and Impact of the Study:  This information will provide direction for developing improved ways in which to manipulate conditions in milk powder manufacturing plants to control biofilms and spores of A. flavithermus .  相似文献   

4.
AIMS: To determine the potential for Bacillus stearothermophilus cells to form biofilms of significance in dairy manufacture. METHODS AND RESULTS: The ability of isolates of B. stearothermophilus from dairy manufacturing plants to attach to stainless steel surfaces was demonstrated by exposing stainless steel samples to suspensions of spores or vegetative cells and determining the numbers attaching using impedance microbiology. Spores attached more readily than vegetative cells. The attachment of cells to stainless steel was increased 10-100-fold by the presence of milk fouling the stainless steel. The growth of B. stearothermophilus as a biofilm on stainless steel surfaces was determined using a continuously flowing experimental reactor. Vegetative cells were released in greater numbers than spores from biofilms of most strains studied. Biofilms of one strain (B11) were studied in detail. Biofilms of > 106 cells cm-2 formed in the reactor and released approximately 106 cells ml-1 into milk passing over the biofilm. A doubling time of 25 min was calculated for this organism grown as a biofilm. CONCLUSION: The formation of biofilms of thermophilic Bacillus species within the plant appears to be a likely cause of contamination of manufactured dairy products. Methods to control the formation of biofilms in dairy manufacturing plants are required to reduce the contamination of dairy products with thermophilic bacilli. SIGNIFICANCE AND IMPACT OF THE STUDY: Biofilms of B. stearothermophilus growing in dairy manufacturing plants can explain the contamination of dairy products with these bacteria.  相似文献   

5.
M.C. Ammons  V. Copié 《Biofouling》2013,29(4):443-455
Medically relevant biofilms have gained a significant level of interest, in part because of the epidemic rise in obesity and an aging population in the developed world. The associated comorbidities of chronic wounds such as pressure ulcers, venous leg ulcers, and diabetic foot wounds remain recalcitrant to the therapies available currently. Development of chronicity in the wound is due primarily to an inability to complete the wound healing process owing to the presence of a bioburden, specifically bacterial biofilms. New therapies are clearly needed which specifically target biofilms. Lactoferrin is a multifaceted molecule of the innate immune system found primarily in milk. While further investigation is warranted to elucidate mechanisms of action, in vitro analyses of lactoferrin and its derivatives have demonstrated that these complex molecules are structurally and functionally well suited to address the heterogeneity of bacterial biofilms. In addition, use of lactoferrin and its derivatives has proven promising in the clinic.  相似文献   

6.
Extracellular matrices utilized by biofilms growing on inert surfaces are generally produced entirely by the bacteria growing within those biofilms, whereas symbiotic (mutualistic) biofilms growing in or on a wide range of plants and animals utilize host-derived macromolecules, such as mucoid substances, as components of their extracellular matrix. Incorporation of host-derived molecules may have a profound effect on the resistance to antibiotics of symbiotic biofilms, which may have important implications for medicine and biology. As an initial probe of the potential effects of host-derived molecules in the extracellular matrix on the sensitivity of biofilms to antibiotics, an in vitro model was used to evaluate the effects of ciprofloxacin on biofilms grown in the presence and absence of SIgA, a host-derived glycoprotein associated with biofilms in the mammalian gut. In five out of six strains of Escherichia coli tested, the incorporation of SIgA into the biofilms apparently reduced the resistance of the bacteria to ciprofloxacin. On the other hand, SIgA generally increased the resistance of planktonic bacteria to ciprofloxacin, perhaps due in part to the SIgA-mediated aggregation of the bacteria. These findings suggest that incorporation of host-derived molecules into the extracellular matrix of symbiotic biofilms might profoundly alter the properties of those biofilms, including the resistance of those biofilms to antibiotics.  相似文献   

7.
Ragusano cheese is a "protected denomination of origin" cheese made in the Hyblean region of Sicily from raw milk using traditional wooden tools, without starter. To explore the Ragusano bacterial ecosystem, molecular fingerprinting was conducted at different times during the ripening and biofilms from the wooden vats called "tinas" were investigated. Raw milks collected at two farm sites, one on the mountain and one at sea level, were processed to produce Ragusano cheese. Raw milk, curd before and after cooking, curd at stretching time (cheese 0 time), and cheese samples (4 and 7 months) were analyzed by PCR-temporal temperature gel electrophoresis (PCR-TTGE) and by classical enumeration microbiology. With the use of universal primers, PCR-TTGE revealed many differences between the raw milk profiles, but also notable common bands identified as Streptococcus thermophilus, Lactobacillus lactis, Lactobacillus delbrueckii, and Enterococcus faecium. After the stretching, TTGE profiles revealed three to five dominant species only through the entire process of ripening. In the biofilms of the two tinas used, one to five species were detected, S. thermophilus being predominant in both. Biofilms from five other tinas were also analyzed by PCR-TTGE, PCR-denaturating gradient gel electrophoresis, specific PCR tests, and sequencing, confirming the predominance of lactic acid bacteria (S. thermophilus, L. lactis, and L. delbrueckii subsp. lactis) and the presence of a few high-GC-content species, like coryneform bacteria. The spontaneous acidification of raw milks before and after contact with the five tinas was followed in two independent experiments. The lag period before acidification can be up to 5 h, depending on the raw milk and the specific tina, highlighting the complexity of this natural inoculation system.  相似文献   

8.
Current antibiofilm solutions based on planktonic bacterial physiology have limited efficacy in clinical and occasionally environmental settings. This has prompted a search for suitable alternatives to conventional therapies. This study compares the inhibitory properties of two biological surfactants (rhamnolipids and a plant-derived surfactant) against a selection of broad-spectrum antibiotics (ampicillin, chloramphenicol and kanamycin). Testing was carried out on a range of bacterial physiologies from planktonic and mixed bacterial biofilms. Rhamnolipids (Rhs) have been extensively characterised for their role in the development of biofilms and inhibition of planktonic bacteria. However, there are limited direct comparisons with antimicrobial substances on established biofilms comprising single or mixed bacterial strains. Baseline measurements of inhibitory activity using planktonic bacterial assays established that broad-spectrum antibiotics were 500 times more effective at inhibiting bacterial growth than either Rhs or plant surfactants. Conversely, Rhs and plant biosurfactants reduced biofilm biomass of established single bacterial biofilms by 74–88 and 74–98 %, respectively. Only kanamycin showed activity against biofilms of Bacillus subtilis and Staphylococcus aureus. Broad-spectrum antibiotics were also ineffective against a complex biofilm of marine bacteria; however, Rhs and plant biosurfactants reduced biofilm biomass by 69 and 42 %, respectively. These data suggest that Rhs and plant-derived surfactants may have an important role in the inhibition of complex biofilms.  相似文献   

9.
Biofilms containing single or mixed cultures of the fungus Hormoconis resinae and anaerobic sulphate-reducing bacteria (SRB) on stainless steel were incubated with an isothiazolone biocide (Kathon FP) at 28°C for 24 h. H. resinae within the biofilm was enumerated by immunofluorescence microscopy using specific antiserum, and SRB were assayed by culture. Fungal numbers in mixed biofilms were considerably reduced in comparison with those in pure biofilms. The biocide was shown to be effective against H. resinae in pure biofilms at 50 and 100 ppm, but in mixed biofilms only at the higher concentration. This concentration also reduced the sessile SRB numbers by 99%.P.S. Guiamet is with the Sección Biolectroquimica, INIFTA, Suc. 4, C.C. 16, 1900 La Plata, Argentina. C.C Gaylarde is with the Departamento de Solos, Fac. de Agronomia, UFRGS, Av. Bento Gonçalves, 7712, 91540-000 Porto Alegre, RS, Brazil  相似文献   

10.
11.
We previously showed that non-conjugative, non-viral lateral plasmid transfer occurs in a colony biofilm of mixed Escherichia coli strains cultured on common laboratory media, such as LB agar. In this report, to investigate the possibility of this plasmid transfer under conditions possible outside the laboratory, we examined the activities of foodstuffs and mixed food extracts, which are possible nutrients for bacteria in human environments, for supporting lateral plasmid transfer. Lateral plasmid transfer occurred in colony biofilms grown on several foodstuffs (roasted meats) and on agar media containing mixed food extracts, which consisted of sugar, milk, and extracts of several foodstuffs (vegetables, fruits, and meats). Lateral plasmid transfer did not occur in liquid culture consisting of the same mixed food extracts, suggesting the importance of colony-biofilm formation. These results suggest the possibility that lateral transfer of non-conjugative plasmid between bacterial cells occurs in biofilms grown with foods or food-like nutrients in the environment.  相似文献   

12.
Dryopteris crassirhizoma is a semi-evergreen plant. Previous studies have shown the potential of this plant as an agent for the control of cariogenic biofilms. In this study, the main antibacterial components of the plant were identified by correlating gas chromatography–mass spectrometry data with the antibacterial activity of chloroform and n-hexane fractions and then evaluating the activity of the most potent antibacterial component against Streptococcus mutans UA159 biofilms. The most potent antibacterial component was linoleic acid, a main component of the n-hexane fraction. Linoleic acid reduced viability in a dose dependent manner and reduced biofilm accumulation during initial and mature biofilm formation. Furthermore, when the biofilms were briefly treated with linoleic acid (10?min/treatment, a total of six times), the dry weight of the biofilms was significantly diminished. In addition, the anti-biofilm activity of the n-hexane fraction was similar to that of linoleic acid. These results suggest that the n-hexane fraction of D. crassirhizoma and linoleic acid may be useful for controlling cariogenic biofilms.  相似文献   

13.
Previous work with Pseudomonas aeruginosa showed that catalase activity in biofilms was significantly reduced relative to that in planktonic cells. To better understand biofilm physiology, we examined possible explanations for the differential expression of catalase in cells cultured in these two different conditions. For maximal catalase activity, biofilm cells required significantly more iron (25 microM as FeCl(3)) in the medium, whereas planktonic cultures required no addition of iron. However, iron-stimulated catalase activity in biofilms was still only about one-third that in planktonic cells. Oxygen effects on catalase activity were also investigated. Nitrate-respiring planktonic cultures produced approximately twice as much catalase activity as aerobic cultures grown in the presence of nitrate; the nitrate stimulation effect could also be demonstrated in biofilms. Cultures fermenting arginine had reduced catalase levels; however, catalase repression was also observed in aerobic cultures grown in the presence of arginine. It was concluded that iron availability, but not oxygen availability, is a major factor affecting catalase expression in biofilms.  相似文献   

14.
The quality of milk products is threatened by the formation of biofilms of thermophilicstreptococci on the internal surfaces of plate heat exchangers used in milk processing. Althoughattachment to stainless steel surfaces is one of the first stages in the development of a biofilm, themechanisms involved in attachment have not been reported. The cell surface properties of 12strains of thermophilic streptococci were examined to determine their importance in attachment tostainless steel surfaces. Hydrophobicity, extracellular polysaccharide production and cell surfacecharge varied between the different strains but could not be related to numbers attaching. Treatingthe cells with sodium metaperiodate, lysozyme or trichloroacetic acid to disrupt cell surfacepolysaccharide had no effect on attachment. Treatment with trypsin or sodium dodecyl sulphate toremove cell surface proteins resulted in a 100-fold reduction in the number of bacteria attaching.This result suggests that the surface proteins of the thermophilic streptococci are important intheir attachment to stainless steel.  相似文献   

15.
Pandit S  Kim HJ  Park SH  Jeon JG 《Biofouling》2012,28(3):279-287
Polygonum cuspidatum is a plant with spreading rhizomes and numerous reddish-brown stems that has been used in Korean folk medicine to improve oral hygiene. Nevertheless, there are no reports related to its possible effect on the virulence of dental biofilms. In this study, the ability of a fraction (F1) separated from P. cuspidatum, alone or in combination with fluoride, to disrupt virulence factors and the composition of Streptococcus mutans biofilms was examined. F1 was mainly composed of resveratrol, emodin and physcion (approximately 16.2%, 18.9% and 2.07% of the weight of F1, respectively). F1 showed inhibitory effects on acid production and F-ATPase activity of S. mutans in biofilms, and could enhance fluoride activity against acid production and acid tolerance of S. mutans in biofilms. When S. mutans biofilms were briefly treated with F1 (10 min, a total of five times), the biomass accumulation, water-insoluble polysaccharides and intracellular iodophilic polysaccharides were reduced. Furthermore, the fluoride activity against biomass accumulation was enhanced by F1. These results suggest that F1 may be useful in the control of dental biofilms and in improving the cariostatic properties of fluoride without increasing its exposure.  相似文献   

16.
AIMS: We examined the efficacy of tetrasodium EDTA in eradicating biofilms derived from salivary inocula or pure cultures of Candida albicans on discs of polymethyl methacrylate (PMMA) denture base or on toothbrushes that had been used normally for 4-8 weeks. Its efficiency in virus neutralization was also determined. METHODS AND RESULTS: Overnight (16 h) treatment with 4% (w/v) tetrasodium EDTA solution reduced salivary and C. albicans biofilm viable counts by > or =99%. Biofilm removal was confirmed using confocal laser scanning microscopy. Presence/absence of sucrose during biofilm formation had no effect on killing efficacy. Prolonged treatment of PMMA with tetrasodium EDTA did not influence subsequent formation of C. albicans biofilms or affect surface roughness of the PMMA, but it reduced subsequent biofilm formation from a salivary inoculum. Infectivities of herpes simplex virus and polio virus suspensions were reduced by >99.99% by treatment for 1 and 2 h, respectively. CONCLUSIONS: Tetrasodium EDTA solution efficiently disinfected toothbrushes and PMMA discs, with the detachment of biofilms, and rapidly neutralized both nonenveloped and enveloped viruses. SIGNIFICANCE AND IMPACT OF THE STUDY: Dentures and toothbrushes become contaminated by bacterial biofilms and by viruses. There is a need for disinfection methods that are rapidly effective, cost-effective, nontoxic and easily implemented. These studies indicate that tetrasodium EDTA solution has disinfection applications in the oral care field.  相似文献   

17.
18.
Bacterial biofilms are a growing concern in a broad range of areas. In this study, a mixture of RNA bacteriophages isolated from municipal wastewater was used to control and remove biofilms. At the concentrations of 400 and 4 × 107 PFU/mL, the phages inhibited Pseudomonas aeruginosa biofilm formation by 45 ± 15% and 73 ± 8%, respectively. At the concentrations of 6,000 and 6 × 107 PFU/mL, the phages removed 45 ± 9% and 75 ± 5% of pre‐existing P. aeruginosa biofilms, respectively. Chlorine reduced biofilm growth by 86 ± 3% at the concentration of 210 mg/L, but it did not remove pre‐existing biofilms. However, a combination of phages (3 × 107 PFU/mL) and chlorine at this concentration reduced biofilm growth by 94 ± 2% and removed 88 ± 6% of existing biofilms. In a continuous flow system with continued biofilm growth, a combination of phages (a one‐time treatment at the concentration of 1.9 × 108 PFU/mL for 1 h first) with chlorine removed 97 ± 1% of biofilms after Day 5 while phage and chlorine treatment alone removed 89 ± 1% and 40 ± 5%, respectively. For existing biofilms, a combined use of a lower phage concentration (3.8 × 105 PFU/mL) and chlorination with a shorter time duration (12 h) followed by continuous water flushing removed 96 ± 1% of biofilms in less than 2 days. Laser scanning confocal microscopy supplemented with electron microscopy indicated that the combination treatment resulted in biofilms with lowest cell density and viability. These results suggest that the combination treatment of phages and chlorine is a promising method to control and remove bacterial biofilms from various surfaces. Biotechnol. Bioeng. 2013; 110: 286–295. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Phage therapy is being reexamined as a strategy for bacterial control in medical and other environments. As microorganisms often live in mixed populations, we examined the effect of Escherichia coli bacteriophage λW60 and Pseudomonas aeruginosa bacteriophage PB-1 infection on the viability of monoculture and mixed-species biofilm and planktonic cultures. In mixed-species biofilm communities, E. coli and P. aeruginosa maintained stable cell populations in the presence of one or both phages. In contrast, E. coli planktonic populations were severely depleted in coculture in the presence of λW60. Both E. coli and P. aeruginosa developed phage resistance in planktonic culture; however, reduced resistance was observed in biofilm communities. Increased phage titers and reduced resistance in biofilms suggest that phage can replicate on susceptible cells in biofilms. Infectious phage could be released from mixed-culture biofilms upon treatment with Tween 20 but not upon treatment with chloroform. Tween 20 and chloroform treatments had no effect on phage associated with planktonic cells, suggesting that planktonic phage were not cell or matrix associated. Transmission electron microscopy showed bacteriophage particles to be enmeshed in the extracellular polymeric substance component of biofilms and that this substance could be removed by Tween 20 treatment. Overall, this study demonstrates how mixed-culture biofilms can maintain a reservoir of viable phage and bacterial populations in the environment.  相似文献   

20.
Current velocity affected the architecture and dynamics of natural, multiphyla, and cross-trophic level biofilms from a forested piedmont stream. We monitored the development and activity of biofilms in streamside flumes operated under two flow regimes (slow [0.065 m s(-1)] and fast [0.23 m s(-1)]) by combined confocal laser scanning microscopy with cryosectioning to observe biofilm structure and composition. Biofilm growth started as bacterial microcolonies embedded in extracellular polymeric substances and transformed into ripple-like structures and ultimately conspicuous quasihexagonal networks. These structures were particularly pronounced in biofilms grown under slow current velocities and were characterized by the prominence of pennate diatoms oriented along their long axes to form the hexagons. Microstructural heterogeneity was dynamic, and biofilms that developed under slower velocities were thicker and had larger surface sinuosity and higher areal densities than their counterparts exposed to higher velocities. Surface sinuosity and biofilm fragmentation increased with thickness, and these changes likely reduced resistance to the mass transfer of solutes from the water column into the biofilms. Nevertheless, estimates of dissolved organic carbon uptake and microbial growth suggested that internal cycling of carbon was more important in thick biofilms grown in slow flow conditions. High-pressure liquid chromatography-pulsed amperometric detection analyses of exopolysaccharides documented a temporal shift in monosaccharide composition as the glucose levels decreased and the levels of rhamnose, galactose, mannose, xylose, and arabinose increased. We attribute this change in chemical composition to the accumulation of diatoms and increased incorporation of detrital particles in mature biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号