首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically costly and those costs must be balanced with the energy needs of other physiological functions. Hypertonic stress causes widespread protein damage in C. elegans. Suppression and management of protein damage is essential for optimal survival under hypertonic conditions. ASH chemosensory neurons allow C. elegans to detect and avoid strongly hypertonic environments. We demonstrate that mutations in osm-9 and osm-12 that disrupt ASH mediated hypertonic avoidance behavior or genetic ablation of ASH neurons are associated with enhanced survival during hypertonic stress. Improved survival is not due to altered systemic volume homeostasis or organic osmolyte accumulation. Instead, we find that osm-9(ok1677) mutant and osm-9(RNAi) worms exhibit reductions in hypertonicity induced protein damage in non-neuronal cells suggesting that enhanced proteostasis capacity may account for improved hypertonic stress resistance in worms with defects in osmotic avoidance behavior. RNA-seq analysis revealed that genes that play roles in managing protein damage are upregulated in osm-9(ok1677) worms. Our findings are consistent with a growing body of work demonstrating that intercellular communication between neuronal and non-neuronal cells plays a critical role in integrating cellular stress resistance with other organismal physiological demands and associated energy costs.  相似文献   

4.
Proteostasis is defined as the homeostatic mechanisms that maintain the function of all cytoplasmic proteins. We recently demonstrated that the capacity of the proteostasis network is a critical factor that defines the limits of cellular and organismal survival in hypertonic environments. The current studies were performed to determine the extent of protein damage induced by cellular water loss. Using worm strains expressing fluorescently tagged foreign and endogenous proteins and proteins with temperature-sensitive point mutations, we demonstrate that hypertonic stress causes aggregation and misfolding of diverse proteins in multiple cell types. Protein damage is rapid. Aggregation of a polyglutamine yellow fluorescent protein reporter is observable with <1 h of hypertonic stress, and aggregate volume doubles approximately every 10 min. Aggregate formation is irreversible and occurs after as little as 10 min of exposure to hypertonic conditions. To determine whether endogenous proteins are aggregated by hypertonic stress, we quantified the relative amount of total cellular protein present in detergent-insoluble extracts. Exposure for 4 h to 400 mM or 500 mM NaCl induced a 55-120% increase in endogenous protein aggregation. Inhibition of insulin signaling or acclimation to mild hypertonic stress increased survival under extreme hypertonic conditions and prevented aggregation of endogenous proteins. Our results demonstrate that hypertonic stress causes widespread and dramatic protein damage and that cells have a significant capacity to remodel the network of proteins that function to maintain proteostasis. These findings have important implications for understanding how cells cope with hypertonic stress and other protein-damaging stressors.  相似文献   

5.
6.
7.
Osmotic-response element-binding protein (OREBP), also known as TonEBP or NFAT5, is thought to be responsible for the induction of osmolyte-accumulating genes when cells are under hypertonic stress. Recent studies suggest that OREBP also plays a role in water reabsorption in the kidney, T-cell proliferation, and embryonic development. We developed transgenic mice that express the dominant-negative OREBP (OREBPdn) specifically in the lens because our earlier studies showed that it is particularly sensitive to osmotic stress. The transgenic mice developed nuclear cataract soon after birth, suggesting defects in lens development. The developing transgenic lenses showed incomplete elongation of fiber cells and formation of vacuoles. This is accompanied by evidence of DNA strand breaks, activation of p53, and induction of checkpoint kinase, suggesting that the developing fiber cells lacking OREBP are in a similar physiological state as cells experiencing hypertonic stress. These results indicate that OREBP-mediated accumulation of osmolytes is essential during elongation of the lens fiber cells.  相似文献   

8.
Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates.  相似文献   

9.
BackgroundOsmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes.Scope of reviewThe present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs.Major conclusionsMAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation.General significanceMAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.  相似文献   

10.
Under high salt conditions, plant growth is severely inhibited due to both osmotic and ionic stresses. In an effort to dissect genes and pathways that respond to changes in osmotic potential under salt stress, the expression patterns were compared of 460 non-redundant salt-responsive genes in barley during the initial phase under osmotic versus salt stress using cDNA microarrays with northern blot and real-time RT-PCR analyses. Out of 52 genes that were differentially expressed under osmotic stress, 11, such as the up-regulated genes for pyrroline-5-carboxylate synthetase, betaine aldehyde dehydrogenase 2, plasma membrane protein 3, and the down-regulated genes for water channel 2, heat shock protein 70, and phospholipase C, were regulated in a virtually identical manner under salt stress. These genes were involved in a wide range of metabolic and signalling pathways suggesting that, during the initial phase under salt stress, several of the cellular responses are mediated by changes in osmotic potential.  相似文献   

11.
12.
The SR proteins constitute a family of nuclear phosphoproteins, which are required for constitutive splicing and also influence alternative splicing regulation. Initially, it was suggested that SR proteins were functionally redundant in constitutive splicing. However, differences have been observed in alternative splicing regulation, suggesting unique functions for individual SR proteins. Homology searches of the Caenorhabditis elegans genome identified seven genes encoding putative orthologues of the human factors SF2/ASF, SRp20, SC35, SRp40, SRp75 and p54, and also several SR-related genes. To address the issue of functional redundancy, we used dsRNA interference (RNAi) to inhibit specific SR protein function during C.elegans development. RNAi with CeSF2/ASF caused late embryonic lethality, suggesting that this gene has an essential function during C.elegans development. RNAi with other SR genes resulted in no obvious phenotype, which is indicative of gene redundancy. Simultaneous interference of two or more SR proteins in certain combinations caused lethality or other developmental defects. RNAi with CeSRPK, an SR protein kinase, resulted in early embryonic lethality, suggesting an essential role for SR protein phosphorylation during development.  相似文献   

13.
14.
In Caenorhabditis elegans, several distinct apoptosis pathways have been characterized in the germline. The physiological pathway is though to eliminate excess germ cells during oogenesis to maintain gonad homeostasis and it is activated by unknown mechanisms. The DNA damage-induced germ cell apoptosis occurs in response to genotoxic agents and involves the proteins EGL-1 and CED-13, and the DNA damage response protein p53. Germ cell apoptosis can also be induced in response to pathogen infection through an EGL-1 dependent pathway. To gain insight into the mechanism and functions of germ cell apoptosis, we investigated whether and how other forms of stress induce this cell death. We found that oxidative, osmotic, heat shock and starvation stresses induce germ cell apoptosis through a p53 and EGL-1 independent pathway. We also learned that the MAPK kinases MEK-1 and SEK-1, and the p53 antagonist protein ABL-1, are essential for stress-induced germ cell apoptosis. We conclude that in C. elegans responses to various stresses that do not involve genotoxicity include an increase in germ cell apoptosis through the physiological pathway.  相似文献   

15.
Wheeler JM  Thomas JH 《Genetics》2006,174(3):1327-1336
Organisms exposed to the damaging effects of high osmolarity accumulate solutes to increase cytoplasmic osmolarity. Yeast accumulates glycerol in response to osmotic stress, activated primarily by MAP kinase Hog1 signaling. A pathway regulated by protein kinase C (PKC1) also responds to changes in osmolarity and cell wall integrity. C. elegans accumulates glycerol when exposed to high osmolarity, but the molecular pathways responsible for this are not well understood. We report the identification of two genes, osm-7 and osm-11, which are related members of a novel gene family. Mutations in either gene lead to high internal levels of glycerol and cause an osmotic resistance phenotype (Osr). These mutants also have an altered defecation rhythm (Dec). Mutations in cuticle collagen genes dpy-2, dpy-7, and dpy-10 cause a similar Osr Dec phenotype. osm-7 is expressed in the hypodermis and may be secreted. We hypothesize that osm-7 and osm-11 interact with the cuticle, and disruption of the cuticle causes activation of signaling pathways that increase glycerol production. The phenotypes of osm-7 are not suppressed by mutations in MAP kinase or PKC pathways, suggesting that C. elegans uses signaling pathways different from yeast to mount a response to osmotic stress.  相似文献   

16.
Tatar M 《Cell metabolism》2005,2(5):281-282
Resveratrol induces longevity in C. elegans through the action of SIR2. Recently published work shows that resveratrol induces genes of the unfolded protein stress response of the endoplasmic reticulum. Paradoxically, these stress genes are repressed by SIR2, suggesting that resveratrol increases life span by inhibiting this SIR2 action.  相似文献   

17.
Cell volume alteration represents an important factor contributing to the pathology of late-onset diseases. Previously, it was reported that protein biosynthesis and degradation are inversely (trans) regulated during cell volume regulation. Upon cell shrinkage, protein biosynthesis was up-regulated and protein degradation down-regulated. Cell swelling showed opposite regulation. Recent evidence suggests a decrease of protein biodegradation activity in many neurodegenerative diseases and even during aging; both also show prominent cell shrinkage. To clarify the effect of cell volume regulation on the overall protein turnover dynamics, we investigated mouse embryonic stem cells under hyper- and hypotonic osmotic conditions using a 2-D gel based proteomics approach. These conditions cause cell swelling and shrinkage, respectively. Our results demonstrate that the adaption to altered osmotic conditions and therefore cell volume alterations affects a broad spectrum of cellular pathways, including stress response, cytoskeleton remodeling and importantly, cellular metabolism and protein degradation. Interestingly, protein synthesis and degradation appears to be cis-regulated (same direction) on a global level. Our findings also support the hypothesis that protein alterations due to osmotic stress contribute to the pathology of neurodegenerative diseases due to a 60% expression overlap with proteins found altered in Alzheimer's, Huntington's, or Parkinson's disease. Eighteen percent of the proteins altered are even shared with all three disorders.  相似文献   

18.
Oxidative stress is an important component of the cytopathology of equine spermatozoa undergoing storage as liquid or frozen semen. Damage to chromatin, membranes and proteins of sperm are important components of oxidative damage to sperm. Similarly, sperm are exposed to a variety of osmotic stresses during storage that result from exposure to hypertonic media or result as a consequence of osmotic changes induced during freezing. A number of changes induced during processing and storage of equine sperm also appear to induce apoptotic-like changes which may adversely affect sperm survival and function. These processes appear in many cases to be interrelated, and this review will examine current understanding of these processes on the equine sperm function.  相似文献   

19.
The accumulation of aggregate-prone proteins is a major representative of many neurological disorders, including Parkinson's disease (PD) wherein the cellular clearance mechanisms, such as the ubiquitin-proteasome and autophagy pathways are impaired. PD, known to be associated with multiple genetic and environmental factors, is characterized by the aggregation of α-synuclein protein and loss of dopaminergic neurons in midbrain. This disease is also associated with other cardiovascular ailments. Herein, we report our findings from studies on the effect of hyper and hypo-osmotic induced toxicity representing hyper and hypotensive condition as an extrinsic epigenetic factor towards modulation of Parkinsonism, using a genetic model Caenorhabditis elegans (C. elegans). Our studies showed that osmotic toxicity had an adverse effect on α-synuclein aggregation, autophagic puncta, lipid content and oxidative stress. Further, we figure that reduced autophagic activity may cause the inefficient clearance of α-synuclein aggregates in osmotic stress toxicity, thereby promoting α-synuclein deposition. Pharmacological induction of autophagy by spermidine proved to be a useful mechanism for protecting cells against the toxic effects of these proteins in such stress conditions. Our studies provide evidence that autophagy is required for the removal of aggregated proteins in these conditions. Studying specific autophagy pathways, we observe that the osmotic stress induced toxicity was largely associated with atg-7 and lgg-1 dependent autophagy pathway, brought together by involvement of mTOR pathway. This represents a unifying pathway to disease in hyper- and hypo-osmotic conditions within PD model of C. elegans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号