首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rho family GTPases are central regulators of neuronal morphology. Recently, Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been identified as new members of Rho family GTPases. Of these, Rnd2 is specifically expressed in neurons in brain; however, the signaling pathways of Rnd2 are not known. Here we have performed a yeast two-hybrid screen using Rnd2 as a bait and identified a novel Rnd2-effector protein, expressed predominantly in brain. We named it Rapostlin (apostle of Rnd2). Rapostlin has two functional domains, Fer-CIP4 homology (FCH) domain at the amino terminus and SH3 (Src homology 3) domain at the carboxyl terminus. In in vitro binding assays, Rapostlin specifically binds to Rnd2 among the Rho family GTPases in a GTP-dependent manner, and the Rnd2-binding domain of Rapostlin is localized between FCH and SH3 domains. Rapostlin directly binds to microtubules, and the amino-terminal region containing the FCH domain of Rapostlin is essential for this interaction. In PC12 cells, Rapostlin induces neurite branching in response to Rnd2, and at least the amino-terminal region of Rapostlin is necessary for this activity. Therefore, Rapostlin is the first effector of Rnd2, regulating neurite branch formation.  相似文献   

2.
Actin reorganization is important for regulation of neuronal morphology. Neural Wiskott-Aldrich syndrome protein (N-WASP) is an important regulator of actin polymerization and also known to be strongly expressed in brain. Recently, Toca-1 (transducer of Cdc42-dependent actin assembly) has been shown to be required for Cdc42 to activate N-WASP from biochemical experiments. Toca-1 has three functional domains: an F-BAR/EFC domain at the N terminus, an HR1 at the center, and an SH3 domain at the C terminus. The F-BAR/EFC domain induces tubular invagination of plasma membrane, while Toca-1 binds both N-WASP and Cdc42 through the SH3 domain and the HR1, respectively. However, the physiological role of Toca-1 is completely unknown. Here we have investigated the neural function of Toca-1. Toca-1 is strongly expressed in neurons including hippocampal neurons in developing brain at early times. Knockdown of Toca-1 in PC12 cells significantly enhances neurite elongation. Consistently, overexpression of Toca-1 suppresses neurite elongation through the F-BAR/EFC domain with a membrane invaginating property, suggesting an implication of membrane trafficking in the neural function of Toca-1. In addition, knockdown of N-WASP, to our surprise, also enhances neurite elongation in PC12 cells, which is in clear contrast to the previous report that dominant negative mutants of N-WASP suppress neurite extension in PC12 cells. On the other hand, knockdown of Toca-1 in cultured rat hippocampal neurons enhances axon branching a little but not axon elongation, while knockdown of N-WASP enhances both axon elongation and branching. These results suggest that a vesicle trafficking regulator Toca-1 regulates different aspects of neuronal morphology from N-WASP.  相似文献   

3.
The Rho family of small GTPases has been implicated in the reorganization of actin cytoskeleton and subsequent morphological changes in various cells. Rnd2 is a member of the Rnd subfamily, comprising Rnd1, Rnd2, and Rnd3. In contrast to Rnd1 and Rnd3, displaying an antagonistic action for RhoA signaling, signaling pathways of Rnd2 are not well known. Here we have performed a yeast two-hybrid screen using Rnd2 as bait and identified a novel Rnd2 effector protein, predominantly expressed in neurons, including cortical and hippocampal neurons. We named it Pragmin (pragma of Rnd2). In in vivo and in vitro binding assays, Pragmin specifically binds to Rnd2 among the Rho family GTPases in a GTP-dependent manner. Rnd2-bound Pragmin significantly stimulates RhoA activity and induces cell contraction through RhoA and the Rho-kinase pathway in HeLa cells. In PC12 cells, expressing Pragmin inhibits nerve growth factor-induced neurite outgrowth in response to Rnd2, and knock-down of Pragmin by Pragmin-specific small interfering RNA enhances neurite elongation. Therefore, Rnd2 regulates neurite outgrowth by functioning as the RhoA activator through Pragmin, in contrast to Rnd1 and Rnd3 inhibiting RhoA signaling.  相似文献   

4.
Grb7 is a member of a family of molecular adapters which are able to contribute positively but also negatively to signal transduction and whose precise roles remain obscure. Rnd1 is a member of the Rho family, but, as opposed to usual GTPases, it is constitutively bound to GTP. We show here that Rnd1 and Grb7 interact, in two-hybrid assays, in vitro, and in pull-down experiments performed with SK-BR3, a breast cancer cell line that overexpresses Grb7. This interaction involves switch II loop of Rnd1, a region crucial for guanine nucleotide exchange in all GTPases, and a Grb7 SH2 domain, a region crucial for Grb7 interaction with several activated receptors. The contribution of the interaction between Rnd1 and Grb7 to their respective functions and properties is discussed.  相似文献   

5.
Rho family GTPases have been shown to be involved in the regulation of neuronal cell morphology, including neurite extension and retraction. Rho activation leads to neurite retraction and cell rounding, whereas Rac and Cdc42 are implicated in the promotion of filopodia and lamellipodia formation in growth cones and, therefore, in neurite extension. In this study, we examined the morphological role of Rnd1, a new member of Rho family GTPases, in PC12 cells, and found that expression of Rnd1 by itself caused the formation of many neuritic processes from the cell body with disruption of the cortical actin filaments, the processes having microtubules but few filamentous actin and neurofilaments. Treatment with cytochalasin D, an inhibitor of actin polymerization, could mimic the effects of expression of Rnd1, in that this inhibitor disrupted the cortical actin filaments and induced the formation of many thin processes containing microtubules. The process formation induced by Rnd1 was inhibited by dominant negative Rac1. These results suggest that Rnd1 induces the Rac-dependent neuritic process formation in part by disruption of the cortical actin filaments.  相似文献   

6.
The Rho family of small GTPases has been implicated in the reorganization of the actin cytoskeleton and subsequent morphological changes in various cells. Rnd1, a member of this family, has a low intrinsic GTPase activity and exerts antagonistic effects on RhoA signaling. However, how the activity of Rnd1 is regulated has not yet been elucidated. Here we have demonstrated that Rnd1 directly associates with FRS2alpha and FRS2beta, which are docking proteins of fibroblast growth factor (FGF) receptors and play important roles in the intracellular signals induced by FGFs. The interaction of FRS2beta with Rnd1 suppresses the inhibitory effect of Rnd1 on RhoA. Rnd1 binds to the COOH-terminal region of FRS2beta including tyrosine residues essential for the interaction with Shp2. When FGF receptor 1 is activated, it phosphorylates FRS2beta, recruits Shp2, and releases Rnd1 from FRS2beta. The liberated Rnd1 then inhibits RhoA activity. Furthermore, knockdown of Rnd1 by Rnd1-specific short interfering RNAs suppress the FGF-induced neurite outgrowth in PC12 cells. These results suggest that the activity of Rnd1 is regulated by FGF receptor through FRS2beta and that Rnd1 plays an important role in the FGF signaling during neurite outgrowth.  相似文献   

7.
Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD·Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD β3-β4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.  相似文献   

8.
Rho family small GTPases are key regulators of the actin cytoskeleton in various cell types. The Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been recently identified as new members of the Rho family of GTPases, and expression of Rnd1 or Rnd3 in fibroblasts causes the disassembly of actin stress fibers and the retraction of the cell body to produce extensively branching cellular processes. Here we have performed a yeast two-hybrid screening by using Rnd1 as bait and identified a novel protein that specifically binds to Rnd GTPases. We named this protein Socius. Socius directly binds to Rnd GTPases through its COOH-terminal region. When transfected into COS-7 cells, Socius is translocated to the cell periphery in response to Rnd1 and Rnd3 and colocalized with the GTPases. While expression of wild-type Socius in Swiss 3T3 fibroblasts has little effect on the actin cytoskeleton, the expression of a membrane-targeted form of Socius, containing a COOH-terminal farnesylation motif (Socius-CAAX), induces a dramatic loss of stress fibers. The inhibitory effect of Socius-CAAX on stress fiber formation is enhanced by truncation of its NH(2) terminus. On the other hand, the expression of Socius-CAAX or its NH(2) terminus-truncated form suppresses the Rnd-induced retraction of the cell body and the production of extensively branching cellular processes, although the disassembly of stress fibers is observed. We propose that Socius participates in the Rnd GTPase-induced signal transduction pathways, leading to reorganization of the actin cytoskeleton.  相似文献   

9.
Pombe Cdc15 homology proteins, characterized by Fer/CIP4 homology Bin-Amphiphysin-Rvs/extended Fer/CIP4 homology (F-BAR/EFC) domains with membrane invaginating property, play critical roles in a variety of membrane reorganization processes. Among them, Rapostlin/formin-binding protein 17 (FBP17) has attracted increasing attention as a critical coordinator of endocytosis. Here we found that Rapostlin was expressed in the developing rat brain, including the hippocampus, in late developmental stages when accelerated dendritic spine formation and maturation occur. In primary cultured rat hippocampal neurons, knockdown of Rapostlin by shRNA or overexpression of Rapostlin-QQ, an F-BAR domain mutant of Rapostlin that has no ability to induce membrane invagination, led to a significant decrease in spine density. Expression of shRNA-resistant wild-type Rapostlin effectively restored spine density in Rapostlin knockdown neurons, whereas expression of Rapostlin deletion mutants lacking the protein kinase C-related kinase homology region 1 (HR1) or Src homology 3 (SH3) domain did not. In addition, knockdown of Rapostlin or overexpression of Rapostlin-QQ reduced the uptake of transferrin in hippocampal neurons. Knockdown of Rnd2, which binds to the HR1 domain of Rapostlin, also reduced spine density and the transferrin uptake. These results suggest that Rapostlin and Rnd2 cooperatively regulate spine density. Indeed, Rnd2 enhanced the Rapostlin-induced tubular membrane invagination. We conclude that the F-BAR protein Rapostlin, whose activity is regulated by Rnd2, plays a key role in spine formation through the regulation of membrane dynamics.  相似文献   

10.
Plexins are receptors for the axon guidance molecule semaphorins, and several lines of evidence suggest that Rho family small GTPases are implicated in the downstream signaling of Plexins. Recent studies have demonstrated that Plexin-B1 activates RhoA and induces growth cone collapse through Rho-specific guanine nucleotide exchange factor PDZ-RhoGEF. Here we show that Rnd1, a member of Rho family GTPases, directly interacted with the cytoplasmic domain of Plexin-B1. In COS-7 cells, coexpression of Rnd1 and Plexin-B1 induced cell contraction in response to semaphorin 4D (Sema4D), a ligand for Plexin-B1, whereas expression of Plexin-B1 alone or coexpression of Rnd1 and a Rnd1 interaction-defective mutant of Plexin-B1 did not. The Sema4D-induced contraction in Plexin-B1/Rnd1-expressing COS-7 cells was suppressed by dominant negative RhoA, a Rho-associated kinase inhibitor, a dominant negative form of PDZ-RhoGEF, or deletion of the carboxyl-terminal PDZ-RhoGEF-binding region of Plexin-B1, indicating that the PDZ-RhoGEF/RhoA/Rho-associated kinase pathway is involved in this morphological effect. We also found that Rnd1 promoted the interaction between Plexin-B1 and PDZ-RhoGEF and thereby dramatically potentiated the Plexin-B1-mediated RhoA activation. We propose that Rnd1 plays an important role in the regulation of Plexin-B1 signaling, leading to Rho activation during axon guidance and cell migration.  相似文献   

11.
Plexin receptors function in response to semaphorin guidance cues in a variety of developmental processes involving cell motility. Interactions with Rho, as well as Ras family small GTPases are critical events in the cell signaling mechanism. We have recently determined the structure of a cytoplasmic domain (RBD) of plexin‐B1 and mapped its binding interface with several Rho‐GTPases, Rac1, Rnd1, and RhoD. All three GTPases associate with a similar region of this plexin domain, but show different functional behavior in cells. To understand whether thermodynamic properties of the GTPase–RBD interaction contribute to such different behavior, we have examined the interaction at different temperatures, buffer, and pH conditions. Although the binding affinity of both Rnd1 and Rac1 with the plexin‐B1 RBD is similar, the detailed thermodynamic properties of the interactions are considerably different. These data suggest that on Rac1 binding to the plexin‐B1 RBD, the proteins become more rigid in the complex. By contrast, Rnd1 binding is consistent with unchanged or slightly increased flexibility in one or both proteins. Both GTPases show an appreciable reduction in affinity for the dimeric plexin‐B1 RBD indicating that GTPase binding is not cooperative with dimer formation, but that a partial steric hindrance destabilizes the dimer. However, a reduced affinity binding mode to a disulphide stabilized model for the dimeric RBD is also possible. Consistent with cellular studies, the interaction thermodynamics imply that further levels of regulation involving additional binding partners and/or regions outside of the RhoGTPase binding domain are required for receptor activation.  相似文献   

12.
Nadrin is a GTPase-activating protein (GAP) for the rho family of GTPases that controls Ca2+-dependent exocytosis in nerve endings. In this study, three novel splice variants of nadrin were identified and the variants were designated as nadrin-102, -104, -116 and -126 according to their relative molecular masses. All nadrin variants share the GAP domain, coiled-coil domain, serine/threonine/proline-rich domain, SH3-binding motif, and a successive repeat of 29 glutamines. Tissue distribution analyses using polyclonal antibodies that can discriminate each variant showed that the expression of nadrin-102, -104 and -116 was dominant in neuronal tissues and correlates well with the differentiation of neurons while nadrin-126 was strongly expressed in embryonic brain. Expression of nadrin-116 in PC12 cells strongly inhibited NGF-dependent neurite outgrowth and this effect was dependent on its GAP activity. In contrast, no significant effect on either cell morphology or neurite outgrowth was observed with other variants. All variants showed punctate appearance throughout the cytoplasm, while the 66-kDa carboxyl-terminal fragment of nadrin-102 and/or nadrin-116 was localized to the nucleus and its nuclear translocation was accelerated by NGF-induced differentiation of the cells. These results suggested that nadrin variants are different in their ability to regulate rho-mediated signaling and that, in addition to being a GTPase-activating protein, nadrin-102 and -116 have other distinct functions in the nucleus of the cell, implying a possible role in the cross-talk between the cytoskeleton and the nucleus.  相似文献   

13.
Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein–protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295–304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many 1H(N), 13C, and 15N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N–H correlations in the 1H–15N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77–83 and residues 127–131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1 switch II region remained un-assigned, the switch I region could be more fully assigned compared to Cdc42 and Rac1. The NMR assignment and structure analysis reported here provides a robust basis for future study of the binding between Rnd1 and other proteins, as well as for further studies of the molecular function of this unusual GTPase.  相似文献   

14.
The Arp2/3 complex can be independently activated to initiate actin polymerization by the VCA domain of WASP family members and by the acidic N-terminal and F-actin-binding repeat region of cortactin, which possesses a C-terminal SH3 domain. Cortactin is a target for phosphorylation by Src tyrosine kinases and by serine/threonine kinases that include Erk. Here we demonstrate that cortactin binds N-WASP and WASP via its SH3 domain, induces in vitro N-WASP-mediated actin polymerization, and colocalizes with N-WASP and WASP at sites of active actin polymerization. Erk phosphorylation and a mimicking S405,418D double mutation enhanced cortactin binding and activation of N-WASP. In contrast, Src phosphorylation inhibited the ability of cortactin previously phosphorylated by Erk, and that of S405,418D double mutant cortactin, to bind and activate N-WASP. Furthermore, Y-->D mutation of three tyrosine residues targeted by Src (Y421, Y466, and Y482) inhibited the ability of S405,418D cortactin to activate N-WASP. We propose that Erk phosphorylation liberates the SH3 domain of cortactin from intramolecular interactions with proline-rich regions, causing it to synergize with WASP and N-WASP in activating the Arp2/3 complex, and that Src phosphorylation terminates cortactin activation of N-WASP and WASP.  相似文献   

15.
Vav2 is a member of the Vav family that serves as guanine nucleotide exchange factors (GEFs) for the Rho family of Ras-related GTPases. Unlike Vav1, whose expression is restricted to cells of hematopoietic origin, Vav2 is broadly expressed. Recently, Vav2 has been identified as a substrate for the EGF receptor. Here, we show that in EGF-treated COS7 cells Vav2 is phosphorylated on tyrosine residues and associates with the EGF receptor. In addition, introducing point mutations into the SH2 domain of green fluorescens protein (GFP)-Vav2 fusion protein leads to the loss of Vav2 tyrosine phosphorylation in response to EGF. To investigate further the mechanism of Vav2 phosphorylation, N-terminal (NT) domain of Vav2 was transiently expressed in COS7 cells as GFP fusion protein. Whereas the NT domain of Vav2 is a preferred substrate for the activated EGF receptor in vitro, we could not detect tyrosine phosphorylation of the GFP-NT construct in EGF-treated cells. However, when the SH2 domain of Vav2 was fused to its NT domain, NT domain proved to be a substrate for the EGF receptor in vivo. These data suggest that membrane-targeting of Vav2 through its SH2 domain is an important event in the phosphorylation and activation of Vav2 in response to EGF.  相似文献   

16.
The c-fes locus encodes a cytoplasmic protein-tyrosine kinase (Fes) previously shown to accelerate nerve growth factor (NGF)-induced neurite outgrowth in rat PC12 cells. Here, we investigated the role of the Rho family small GTPases Rac1 and Cdc42 in Fes-mediated neuritogenesis, which have been implicated in neuronal differentiation in other systems. Fes-induced acceleration of neurite outgrowth in response to NGF treatment was completely blocked by the expression of dominant-negative Rac1 or Cdc42. Expression of a kinase-active mutant of Fes induced constitutive relocalization of endogenous Rac1 to the cell periphery in the absence of NGF, and led to dramatic actin reorganization and spontaneous neurite extension. We also investigated the breakpoint cluster region protein (Bcr), which possesses the Dbl and PH domains characteristic of guanine nucleotide exchange factors for Rho family GTPases, as a possible link between Fes, Rac/Cdc42 activation, and neuritogenesis. Coexpression of a GFP-Bcr fusion protein containing the Fes binding and tyrosine phosphorylation sites (amino acids 162-413) completely suppressed neurite outgrowth triggered by Fes. Conversely, coexpression of full-length Bcr with wild-type Fes in PC12 cells induced NGF-independent neurite formation. Taken together, these data suggest that Fes and Bcr cooperate to activate Rho family GTPases as part of a novel pathway regulating neurite extension in PC12 cells, and provide more evidence for an emerging role for Fes in neuronal differentiation.  相似文献   

17.
Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1–plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.  相似文献   

18.
The Rnd proteins, which form a distinct sub-group of the Rho family of small GTP-binding proteins, have been shown to regulate the organization of the actin cytoskeleton in several tissues. In the brain, they participate in neurite extension, whereas in smooth muscle, they modulate contractility. Recent evidence has shown that Rnd3 (RhoE) is also involved in the regulation of cell-cycle progression and transformation, indicating that these proteins might have other, as yet unexplored roles.  相似文献   

19.
Plexins represent a novel family of transmembrane receptors that transduce attractive and repulsive signals mediated by the axon-guiding molecules semaphorins. Emerging evidence implicates Rho GTPases in these biological events. However, Plexins lack any known catalytic activity in their conserved cytoplasmic tails, and how they transduce signals from semaphorins to Rho is still unknown. Here we show that Plexin B2 associates directly with two members of a recently identified family of Dbl homology/pleckstrin homology containing guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and Leukemia-associated Rho GEF (LARG). This physical interaction is mediated by their PDZ domains and a PDZ-binding motif found only in Plexins of the B family. In addition, we show that ligand-induced dimerization of Plexin B is sufficient to stimulate endogenous RhoA potently and to induce the reorganization of the cytoskeleton. Moreover, overexpression of the PDZ domain of PDZ-RhoGEF but not its regulator of G protein signaling domain prevents cell rounding and neurite retraction of differentiated PC12 cells induced by activation of endogenous Plexin B1 by semaphorin 4D. The association of Plexins with LARG and PDZ-RhoGEF thus provides a direct molecular mechanism by which semaphorins acting on Plexin B can control Rho, thereby regulating the actin-cytoskeleton during axonal guidance and cell migration.  相似文献   

20.
Neural Wiskott-Aldrich syndrome protein (N-WASP) is an actin-regulating protein that induces filopodium formation downstream of Cdc42. It has been shown that filopodia actively extend from the growth cone, a guidance apparatus located at the tip of neurites, suggesting their role in neurite extension. Here we examined the possible involvement of N-WASP in the neurite extension process. Since verprolin, cofilin homology and acidic region (VCA) of N-WASP is known to be required for the activation of Arp2/3 complex that induces actin polymerization, we prepared a mutant (Deltacof) lacking four amino acid residues in the cofilin homology region. The corresponding residues in WASP had been reported to be mutated in some Wiskott-Aldrich syndrome patients. Expression of Deltacof N-WASP suppressed neurite extension of PC12 cells. In support of this, the VCA region of Deltacof cannot activate Arp2/3 complex enough compared with wild-type VCA. Furthermore, H208D mutant, which has been shown unable to bind to Cdc42, also works as a dominant negative mutant in neurite extension assay. Interestingly, the expression of H208D-Deltacof double mutant has no significant dominant negative effect. Finally, the expression of the Deltacof mutant also severely inhibited the neurite extension of primary neurons from rat hippocampus. Thus, N-WASP is thought to be a general regulator of the actin cytoskeleton indispensable for neurite extension, which is probably caused through Cdc42 signaling and Arp2/3 complex-induced actin polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号