首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The major enzyme in Clostridium acetobutylicum ATCC 824 leading to transformation of TNT has been reported to be the Fe-only hydrogenase. In this study, we examine the effect of inhibitors of hydrogenase on TNT reduction by Clostridial extracts. These experiments further demonstrate the major role of hydrogenase in TNT transformation. The C. acetobutylicum hydrogenase is closely related to that of C. pasteurianum; and can be fitted to the X-ray crystal structure with a root mean square deviation of 1.18 Å for the Cα atoms of the generated 3D simulation model. The Hyd1, Hyd2, and Hyd3 antibodies generated against hydrogenase reacted with both the hydrogenase in cell extracts and with C. acetobutylicum hydrogenase expressed in Escherichia coli. Inhibition studies using antibodies against Fe-only hydrogenase from C. acetobutylicum indicated that the transformation of TNT by crude cell extracts was completely inhibited by Hyd2 antibody (to amino acid 415–428) whereas antibodies Hyd1 (to residues 1–16) and Hyd3 (to amino acid 424–448) inhibited less effectively. The TNT transforming activity of the cell extract was retained when Hyd2 antibody pretreated with purified but enzymatically inactive recombinant hydrogenase was added to the extract. Addition of the transition metal Cu (2+) to extracts completely inhibited the transformation of TNT suggesting the destruction of [4Fe–4S] centers which are essential for transfer of electrons from the H2-activating site to TNT. Growth of C. acetobutylicum was also inhibited by 0.5 mM Cu(2+) and Hg(2+) ions. The triazine dye, procion red and the nitroimidazole drug, metronidazole inhibit TNT reduction. The inhibition studies using antibodies, procion red, metronidazole, and transition metals suggest that different portions of hydrogenase are required for effective TNT reduction.  相似文献   

2.
The immunological relationship of the hydrogenase in Frankia KB5 to hydrogenases in other microorganisms was investigated using antisera raised against holo-[NiFe]-hydrogenases isolated from Alcaligenes latus, Azotobacter vinelandii, Ralstonia eutropha, and the small and large hydrogenase subunits from Bradyrhizobium japonicum. The antisera raised against the A. latus, R. eutropha, and B. japonicum (large subunit) polypeptides were found to recognize two polypeptides, corresponding to the unprocessed and processed forms of the hydrogenase subunit in Frankia KB5. None of the antisera, including the antibodies produced against the small hydrogenase subunit isolated from B. japonicum, recognized any polypeptide related to the small hydrogenase subunit in Frankia KB5. An immunogold localization study of the intracellular distribution of hydrogenase in Frankia KB5, with the cryo-section technique, showed that labeling in the membrane of both hyphae and vesicles was positively correlated with hydrogenase activity. Received: 6 November 2000 / Accepted: 18 December 2000  相似文献   

3.
Four strains ofRhizobium (R. trifolii RCL10,R. japonicum S19 and SB16, andRhizobium sp. NEA4) were demonstrated to grow lithoautotrophically with molecular hydrogen as sole electron donor and with ammonium or with N2 as N source. All of them showed ribulose-1,5-bisphosphate carboxylase activity and hydrogenase (H2-uptake) activity with methylene blue and oxygen as electron acceptors. ForR. japonicum SB 16, a doubling time under autotrophic conditions of 30 h and a specific hydrogenase activity (methylene blue reduction) in crude extracts of 1.4 U/mg protein were calculated.Rhizobium hydrogenase is a membrane-bound enzyme. It is mainly detectable in particulate cell fractions, it cross-reacts with the antibodies of the membrane-bound hydrogenase ofAlcaligenes eutrophus, and is unable to reduce NAD. The isolated hydrogenase is a relatively oxygen-sensitive enzyme with a half-life of three days when stored at 4°C under air.  相似文献   

4.
Amino acid residues His and Cys of the NAD-dependent hydrogenase from the hydrogen-oxidizing bacterium Ralstonia eutropha H16 were chemically modified with specific reagents. The modification of His residues of the nonactivated hydrogenase resulted in decrease in both hydrogenase and diaphorase activities of the enzyme. Activation of NADH hydrogenase under anaerobic conditions additionally modified a His residue (or residues) significant only for the hydrogenase activity. The rate of decrease in the diaphorase activity was unchanged. The modification of thiol groups of the nonactivated enzyme did not affect the hydrogenase activity. The effect of thiol-modifying agents on the activated hydrogenase was accompanied by inactivation of both diaphorase and hydrogenase activities. The modification degree and changes in the corresponding catalytic activities depended on conditions of the enzyme activation. Data on the modification of cysteine and histidine residues of the hydrogenase suggested that the enzyme activation should be associated with significant conformational changes in the protein globule.  相似文献   

5.
The localization of hydrogenase in the phototrophic bacterium Thiocapsa roseopersicina was investigated by subcellular fractionations, and transmission electron microscopic immunocytochemistry. By using sonicated cells and measuring in vitro hydrogenase activities in soluble and membrane fractions, respectively, a weak hydrophobic interaction between the hydrogenase enzyme and the T. roseopersicina membranes was observed. Polyclonal antisera directed against the purified hydrogenase were raised in rabbits and exhibited one band in native-PAGE/Western immunoblot analysis. Native-PAGE/activity stain confirmed the identity of this band as being hydrogenase. Immunocytolocalization experiments using ultrathin sections showed an internal localization of the hydrogenase enzyme. A higher specific labeling was associated with chromatophores, indicating a possible coupling of hydrogenase with the photosynthetic membranes in the T. roseopersicina cells.  相似文献   

6.
Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher’s disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59–66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.  相似文献   

7.
Monoclonal antibodies specific for cell culture mycoplasmas   总被引:3,自引:0,他引:3  
Summary Mycoplasma infection of cell cultures is still a major problem in some laboratories. Although several methods can be used for their detection, identification is normally by serological procedures. As no commercial source for the necessary antibodies is available we have prepared monoclonal antibodies to the five mycoplasma species that account for the majority of cell culture infections. These antibodies have been characterized by the growth inhibition test (GIT), immunofluorescence, and enzyme linked immunosorbent assay (ELISA) and have shown perfect correlation in all tests when compared to conventional antisera raised in rabbits or donkeys. In addition, a monoclonal antibody toMycoplasma pneumoniae was produced.M. pneumoniae is an infrequent cell culture contaminant but is a human pathogen, and the monoclonal antibody described here could be useful in the clinical diagnosis ofM. pneumoniae infection in man. These studies were supported by Grants Al-15748 from the National Institute of Allergy and Infectious Diseases, and GM20138-07 from the National Institutes of Health, Bethesda, MD.  相似文献   

8.
The localization of hydrogenase protein in Desulfovibrio gigas cells grown either in lactate-sulfate or hydrogen-sulfate media, has been investigated by subcellular fractionation with immunoblotting and by electron microscopic immunocytochemistry. Subcellular fractionation experiments suggest that no integral membrane-bound hydrogenase is present in D. gigas. About 40% of the hydrogenase activity could be extracted by treatment of D. gigas cells with Tris-EDTA buffer. The rest of the soluble hydrogenase activity (50%) was found in the soluble fraction which was obtained after disruption of Tris-EDTA extracted cells and high speed centrifugation. Both soluble hydrogenase fractions purified to homogeneity showed identical molecular properties including the N-terminal aminoacid sequences of their large and small subunits. Polyacrylamide gel electrophoresis of the proteins of the subcellular fractions revealed a single band of hydrogenase activity exhibiting the same mobility as purified D. gigas hydrogenase. Western blotting carried out on these subcellular fractions revealed crossreactivity with the antibodies raised against (NiFe) hydrogenase. The lack of crossreactivity with antibodies against (FE) or (NiFeSe) hydrogenases, indicated that only (NiFe) type hydrogenase is present in D. gigas.Immunocytolocalization in ultrathin frozen sections of D. gigas cells grown either in lactate-sulfate, pyruvate-sulfate or hydrogen-sulfate media showed only a (NiFe) hydrogenase located in the periplasmic space. The bioenergetics of D. gigas are discussed in the light of these findings.  相似文献   

9.
A total of five hybridoma cell lines that produced monoclonal antibodies (MAb) against a hemolysin (Bt-hemolysin) produced by Bacillus thuringiensis were established and characterized. All of these monoclonal antibodies reacted similarly not only to Bt-hemolysin but also to a hemolysin (Bc-hemolysin) produced by B. cereus, suggesting that the two hemolysins are immunologically indistinguishable. The MAb developed in this study was also successfully applied for rapid and simple purification of both Bt- and Bc-hemolysins by immunoaffinity column chromatography. The partial N-terminal amino acid sequence of the purified hemolysins was determined to be Ile-Glu-Gln-Thr.  相似文献   

10.
Several unicellular and filamentous, nitrogen-fixing and non-nitrogen-fixing cyanobacterial strains have been investigated on the molecular and the physiological level in order to find the most efficient organisms for photobiological hydrogen production. These strains were screened for the presence or absence of hup and hox genes, and it was shown that they have different sets of genes involved in H2 evolution. The uptake hydrogenase was identified in all N2-fixing cyanobacteria, and some of these strains also contained the bidirectional hydrogenase, whereas the non-nitrogen fixing strains only possessed the bidirectional enzyme. In N2-fixing strains, hydrogen was mainly produced by the nitrogenase as a by-product during the reduction of atmospheric nitrogen to ammonia. Therefore, hydrogen production was investigated both under non-nitrogen-fixing conditions and under nitrogen limitation. It was shown that the hydrogen uptake activity is linked to the nitrogenase activity, whereas the hydrogen evolution activity of the bidirectional hydrogenase is not dependent or even related to diazotrophic growth conditions. With regard to large-scale hydrogen evolution by N2-fixing cyanobacteria, hydrogen uptake-deficient mutants have to be used because of their inability to re-oxidize the hydrogen produced by the nitrogenase. On the other hand, fermentative H2 production by the bidirectional hydrogenase should also be taken into account in further investigations of biological hydrogen production.Abbreviations Chl chlorophyll - MV methyl viologen  相似文献   

11.
Six hybridoma clones were obtained that secreted monoclonal antibodies against the aspartate aminotransferase-P1 (AAT-P1) isoenzyme from root nodules of Lupinus angustifolius [L.] cv Uniharvest. This enzyme is found constitutively in the plant cytosol fraction. The monoclonal antibodies produced were all of the immunoglobulin G1 class, recognized two distinct epitopes on the protein, and represented the major paratopes found in the immunoglobulin fraction of sera taken from mice and rabbits immunized with the pure AAT-P1 protein. One of these epitopes was unique to lupin nodule AAT-P1. The other epitope was shown to be present on enzyme from lupin bean, white clover and tobacco leaves, lupin roots and nodules, and potato tubers. Both epitopes were recognized by the appropriate monoclonal antibodies in both their native and denatured forms. None of the monoclonal antibodies produced reacted with Rhizobium lupini NZP2257, Escherichia coli extracts, or with the inducible aspartate aminotransferase-P2 (AAT-P2) isoform also found in root nodules. A sandwich enzyme-linked immunosorbent assay utilizing two monoclonal antibodies recognizing the two distinct epitopes was developed and was capable of quantitating AAT-P1 in plant extracts. The limit of detection of AAT-P1 was less than 15 pg/mL and AAT-P1 protein could be quantified in the range 80 to 1000 pg/mL. Using this assay, AAT-P1 protein was shown to remain relatively constant during nodule development. Use of an AAT-P2-specific monoclonal antibody that inhibits the enzyme activity of this isoform enabled the direct determination of AAT-P1 enzyme activity in nodule extracts. Using these assays, specific activities of the individual isoforms were calculated; that of the AAT-P1 isoform was shown to be 7.5-fold higher than that of the AAT-P2 isoform.  相似文献   

12.
The cytoplasmic, NAD-linked hydrogenase of Alcaligenes eutrophus H16 consists of four non-identical subunits. From the mutant strain HF14, defective in this enzyme, a protein was isolated that reacted with specific antibodies raised against the wild-type hydrogenase; the reaction type was of partial identity. The same protein was also tested with specific antibodies raised against each of the four denatured subunits of the wild-type hydrogenase and was found to be completely identical with the second largest subunit; it reacted weakly with the antibody against the largest subunit and not at all with the antibody against the small subunits. In SDS-polyacrylamide gel electrophoresis the protein of the mutant migrated as a single polypeptide and corresponded to the second largest subunit of soluble hydrogenase with Mr = 56,000. The mutant enzyme strongly differed from the wild-type hydrogenase in its binding behaviour to chromatographic gels. It had pronounced hydrophobic properties and bound strongly to phenyl-Sepharose; it had high affinity to triazin dye gels. Enzymatically the polypeptide was totally inactive with NAD as electron acceptor, but showed weak residual activities with methylene blue, ferricyanide and cytochrome c. The protein also contained nickel; however, because of the instability of this polypeptide the amount varied between 0.2-1.4 nickel per enzyme molecule. As shown by ESR studies, the iron is organized in a [4Fe-4S] cluster but is partially present also in the 3Fe-form. No nickel signal could be detected. The role of the polypeptide subunit for hydrogen activation in the intact hydrogenase is discussed.  相似文献   

13.
Polyclonal, monospecific antibodies were produced against the two subunits (Mr 62,000, and Mr 31,000), isolated from the membrane-bound hydrogenase of Alcaligenes eutrophus H16. The antibodies (IgG fractions) were purified from crude sera by Protein A-Sepharose CL-4B chromatography. By double immunodiffusion assays and tandem-crossed immunoelectrophoresis the large and the small subunit were demonstrated not to be immunologically related. Immunological comparison of these subunits with the four non-identical subunits (Mr 63,000, 56,000, 30,000 and 26,000) of the NAD-linked, soluble hydrogenase from A. eutrophus H16 showed that the subunits of the membrane-bound hydrogenase did not cross-react with any of the antibodies raised against the four subunits of the NAD-linked enzyme and that, vice versa, none of these four subunits cross-reacted with antibodies raised against the two subunits of the membrane-bound hydrogenase. This means that A. eutrophus H16 contains altogether six non-identical immunologically unrelated hydrogenase polypeptides. The membrane-bound hydrogenases were isolated and purified from various aerobic H2-oxidizing bacteria: A. eutrophus H16, A. eutrophus type strain, A. eutrophus CH34, A. eutrophus Z1, A. hydrogenophilus, Paracoccus denitrificans and strain Cd2/01. All these proteins resembled each other and each consisted of two non-identical polypeptides. A complete separation of these subunits was achieved at high-yield by preparative FPLC gel filtration on three Superose 12 columns connected in series, using SDS and DTT-containing sodium phosphate buffer (pH 7.0). The small subunits of these enzymes turned out to be immunologically closely related to each other; they were either identical or almost identical. The large subunits were also related, but less pronounced. Only the large subunits from Z1 and type strain reacted fully identical with the H16 subunit. Of the two isolated, homogeneous subunits of the membrane-bound hydrogenase from A. eutrophus H16, the amino acid compositions and the NH2-terminal sequences have been determined. The results confirmed the diversity of the large and the small subunit. Furthermore, for comparison also the NH2-terminal sequences of the two subunits from the hydrogenase of A. eutrophus CH34 have been analysed.  相似文献   

14.
Biosynthesis of the metallocenter in the active site of the [NiFe] hydrogenase enzyme requires the accessory protein HypB, which is a metal-binding GTPase. In this study, the interplay between the individual activities of Escherichia coli HypB was examined. The full-length protein undergoes nucleotide-responsive dimerization that is disrupted upon mutation of L242 and L246 to alanine. This mutant HypB is monomeric under all of the conditions investigated but the inability of L242A/L246A HypB to dimerize does not abolish its GTPase activity and the monomeric protein has metal-binding behavior similar to that of wild-type HypB. Furthermore, expression of L242A/L246A HypB in vivo results in hydrogenase activity that is approximately half of the activity produced by the wild-type control, suggesting that dimerization of HypB does not have a critical role in the hydrogenase maturation pathway. In contrast, the GTPase activity of HypB is modulated by metal loading of the protein. These results provide insight into the role of HypB in hydrogenase biosynthesis.  相似文献   

15.
The soluble, NAD+-reducing hydrogenase in intact cells of Alcaligenes eutrophus was inactivated by oxygen when electron donors such as hydrogen or pyruvate were available. The sole presence of either oxygen or oxidizable substrates did not lead to inactivation of the enzyme. Inactivation occurred similarly under autotrophic growth conditions with hydrogen, oxygen and carbon dioxide. The inactivation followed first order reaction kinetics, and the half-life of the enzyme in cells exposed to a gas atmosphere of hydrogen and oxygen (8:2, v/v) at 30° C was 1.5 h. The process of inactivation did not require ATP-synthesis. There was no experimental evidence that the inactivation is a reversible process catalyzed by a regulatory protein. The possibility is discussed that the inactivation is due to superoxide radical anions (O 2 - ) produced by the hydrogenase itself.  相似文献   

16.
Summary The hydrogenase found in Rhizobium bacteroids is compared with that found in Azotobacter and found, in all respects examined, to be similar. When three host species were inoculated with Rhizobium, strain 311, different amounts of hydrogenase activity were found in Pisum sativum and Vicia bengalensis while the enzyme was absent from nodules of Vicia faba. Of four different strains of Rhizobium examined only two strains possessed the hydrogenase when present in pea root nodules. The role of the hydrogenase in nitrogen fixation is discussed and it is tentatively concluded that the overall efficiency of the nitrogen fixation process is increased by its presence.  相似文献   

17.
The data reported in this investigation revealed that phosphate and hydrogenase can affect the corrosion of mild steel. Phosphate reacted on mild-steel with concomitant evolution of hydrogen gas (H2) and the formation of vivianite. The enzyme hydrogenase was shown to accelerate this reaction by oxidizing the H2 produced, its known substrate. The components of biological growth media, one of which has been identified as phosphate, can interact with mild steel and cause corrosion. The implications of these findings to the corrosion industry are discussed. Correspondence to: E. Laishley  相似文献   

18.
Hydrogenase of Thiobacillus ferrooxidans ATCC 19859 was purified from cells grown lithoautotrophically with 80% hydrogen, 8.6% carbon dioxide, and 11.4% air. Hydrogenase was located in the 140,000 ×g supernatant in cell-free extracts. The enzyme was purified 7.3-fold after chromatography on Procion Red and Q-Sepharose with a yield of 19%, resulting in an 85% pure preparation with a specific activity of 6.0 U (mg protein)–1. With native PAGE, a mol. mass of 100 and 200 kDa was determined. With SDS-PAGE, two subunits of 64 (HoxG) and of 34 kDa (HoxK) were observed. Hydrogenase reacted with methylene blue and other artificial electron acceptors, but not with NAD. The optimum of enzyme activity was at pH 9 and at 49° C. Hydrogenase contained 0.72 mol nickel and 6.02 mol iron per mol enzyme. The relationship of the T. ferrooxidans hydrogenase to other proteins was examined. A 9.5-kb EcoRI fragment of T. ferrooxidans ATCC 19859 hybridized with a 2.2-kb XhoI fragment from Alcaligenes eutrophus encoding the membrane-bound hydrogenase. Antibodies against this enzyme did not react with the T. ferrooxidans hydrogenase in Western blot analysis. The N-terminal amino acid sequence (40 amino acids) of HoxK was 46% identical to that of the hydrogen sensor HupU of Bradyrhizobium japonicum and 39% identical to that of the HupS subunit of the Desulfovibrio baculatus hydrogenase. The N-terminal sequence of 20 amino acids of HoxG of T. ferrooxidans was 83.3% identical to that of the 60-kDa subunit. HupL, of the hydrogenase of Anabaena sp. Sequences of ten internal peptides of HoxG were 50–100% identical to the respective sequences of HupL of the Anabaena sp. hydrogenase. Received: 17 November 1995 / Accepted: 2 February 1996  相似文献   

19.
20.
Summary Eleven monoclonal antibodies were identified that recognized eel electroplax sodium channels. All the monoclonal antibodies specifically immunostained the mature TTX-sensitive sodium channel (M r 265,000) on immunoblots. None of the monoclonal antibodies would precipitate the in vitro translated channel core polypeptide in solution. One monoclonal antibody, 3G4, was found to bind to an epitope involving terminal polysialic acids. Extensive digestion of the channel by the exosialidase, neuraminidase, or partial polysialic acid removal bythe endosialidase, endo-N-acetylneuraminidase, destroy the 3G4 epitope, 3G4 is, therefore, a highly selective probe for the post-translationally attached polysialic acids. Except for this monoclonal antibody, the epitopes recognized by the remaining antibodies were highly resistant to extensive N-linked deglycosylation. Thus, the monoclonal antibodies may be directed against unique post-translationally produced domains of the electroplax sodium channel, presumably sugar groups that are abundant on this protein (Miller, J.A., Agnew, W.S., Levinson, S.R. 1983.Biochemistry 22:462–470). These monoclonal antibodies should prove useful as tools to study discrete post-translational processing events in sodium channel biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号