首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated.  相似文献   

2.
Conformational searches on three closely related pp60(c-src) protein tyrosine kinase inhibitors of varying potencies were performed to determine a structural basis for their activity. The first was a linear peptide (PDNEYAFFQf), the second its 10-membered cyclic analogue, and the third a cyclic analogue with a para carboxyphenylalanine in place of one the F residues. A common backbone conformation with an antiparallel beta-sheet-like geometry capped by similar beta-turns was found for all three peptides, which may be a binding conformation and gives a candidate pharmacophore for further testing. The interaction between some polar side chains and between some of the aromatic rings may be important for maintaining the correct conformation. The differences in potencies of these inhibitors may be attributed to certain thermodynamic and chemical reasons.  相似文献   

3.
The Ca2+- and phospholipid-dependent protein kinase (C-kinase) binds tightly in the presence of Ca2+ to purified membranes of A431 human epidermoid carcinoma cells. The major membrane substrate for C-kinase is the epidermal growth factor (EGF) receptor. Phosphorylation of the EGF receptor is Ca2+-dependent and occurs at threonine and serine residues. After tryptic digestion of the receptor, three major phosphothreonine-containing peptides were identified. These are identical with three new phosphopeptides present in the EGF receptor isolated from A431 cells treated with either of the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. C-kinase catalyzes phosphorylation at these same sites in purified EGF receptor protein. These results indicate that, in A431 cells exposed to tumor promoters, C-kinase catalyzes phosphorylation of a significant population of EGF receptor molecules. This phosphorylation of EGF receptors results in decreased self-phosphorylation of the EGF receptor at tyrosine residues both in vivo and in vitro and in decreased EGF-stimulated tyrosine kinase activity in vivo.  相似文献   

4.
In previous studies examining the potential role of pp60c-src in cellular proliferation, we demonstrated that C3H10T1/2 murine embryo fibroblasts overexpressing transfected chicken genomic c-src displayed an epidermal growth factor (EGF)-induced mitogenic response which was 200 to 500% of the response exhibited by parental control cells (Luttrell et al., Mol. Cell. Biol. 8:497-501, 1988). In order to examine specific structural and functional requirements for pp60c-src in this event, 10T1/2 cells were transfected with chicken c-src genes encoding pp60c-src deficient in tyrosine kinase activity (pm430), myristylation, (pm2A), or a domain hypothesized to modulate the interaction with substrates or regulatory components (dl155). Neomycin-resistant clonal cell lines overexpressing each of the mutated c-src genes were assayed for EGF mitogenic responsiveness by measuring [3H]thymidine incorporation into acid-precipitable material or into labeled nuclei. The results were compared with those obtained with lines overexpressing the cDNA form of wild-type (wt) c-src or control cells transfected with the neomycin resistance gene only. As previously described for cells overexpressing wt genomic c-src (Luttrell et al., 1988), clones overexpressing wt cDNA c-src also exhibited enhanced EGF mitogenic responses ranging from approximately 300 to 400% of the control cell response. In contrast, clones overexpressing unmyristylated, modulation-defective, or kinase-deficient c-src not only failed to support an augmented response to EGF but also exhibited EGF responses lower than that of the control cells. Furthermore, there were no significant differences in the mitogenic responses to 10% fetal calf serum among any of the cells tested. These results indicate that pp60(c-scr) can potentiate mitogenic signaling generated by EGF but not all growth factors. This potentiation requires the utilization of pp60(c-scr) myristylation, and modulatory and tyrosine kinase domains and can me mediated by cDNA-encoded as well as by genome-encoded wt pp60(c-scr).  相似文献   

5.
Intact pp60c-src, the cellular homologue of the transforming protein of Rous sarcoma virus, was purified from human platelets. The purified fractions also contained small amounts of a 54-kDa proteolytic degradation product of pp60c-src. We investigated some of the biochemical and kinetic properties of pp60c-src protein tyrosine kinase. Maximum kinase activity occurred at pH 6.5 and required a mixture of 2 mM Mn2+/Mg2+ as divalent cations. The enzyme most strongly phosphorylated casein, followed by enolase and alcohol dehydrogenase. The Km value for ATP was 4 microM for substrate phosphorylation and for autophosphorylation. Using casein, we determined a Vmax for substrate phosphorylation by pp60c-src in the range of 1.9-3.4 nmol.min-1.mg-1. Since the Vmax value for the purified 54-kDa fragment of pp60c-src was also included in this value, we conclude that proteolytic degradation of a 6-kDa fragment from the N-terminus of pp60c-src did not affect its kinase activity. Tryptic phosphopeptide analysis identified Tyr-416 as the major autophosphorylation site. Preincubation of purified pp60c-src with ATP increased the amount of autophosphorylation accompanied by an increase in Vmax, whereas the Km values were not altered. Our data directly demonstrate that autophosphorylation at Tyr-416 exerts, in contrast to phosphorylation at Tyr-527, a positive regulatory effect on the pp60c-src kinase activity.  相似文献   

6.
Summary Using a combinatorial peptide library method, we identified YIYGSFK as an efficient and specific peptide substrate for pp60c-src protein tyrosine kinase (PTK) [Lam et al., Int. J. Pept. Protein Res., 45 (1995) 587]. Employing YIYGSFK as a template, we synthesized and evaluated a series of pseudosubstrate-based inhibitors for pp60c-src. We found that the efficiency of a given inhibitor was highly dependent on the specific tyrosine analog used at the phosphorylation site of the substrate. One of these pseudosubstrate inhibitors, YI(2-Nal)GSFK, selectively inhibited the kinase activity of pp60c-src, with a Ki of 24 M. This peptide inhibitor exhibited selectivity for pp60c-src as compared to other PTKs tested, such as c-Abl and Bcr-Abl. Our results suggest that selective inhibitors for a specific PTK can be developed when the structure of a specific and efficient small peptide substrate for this PTK can be used as a template for structure modification.Abbreviations 1-Nal l-1-naphthylalanine - 2-Nal l-2-naphthylalanine - BOP benzotriazolyl-N-oxy-tris(dimethylamino)-phosphonium hexafluorophosphate - BSA bovine serum albumin - cAPK cyclic AMP-dependent protein kinase - DIEA diisopropylethylamine - EGFR epidermal growth factor receptor - Fmoc fluorenylmethoxycarbonyl - HOBt 1-hydroxybenzotriazole - MES 2-[N-morpholino]ethanesulfonic acid - PBS phosphate-buffered salts - pCl l-p-chlorophenylalanine - pF l-p-fluorophenylalanine - PTK protein tyrosine kinase - TLC thin-layer chromatography  相似文献   

7.
A protein tyrosine kinase involved in regulation of pp60c-src function   总被引:22,自引:0,他引:22  
We recently identified a novel protein tyrosine kinase that specifically phosphorylates truncated pp60c-src (Mr = 53,000) at a tyrosine residue(s) distinct from its autophosphorylation site. In this study, we examined whether this enzyme phosphorylates intact pp60c-src (Mr = 60,000) and determined its phosphorylation site. Non-neuronal and neuronal forms of intact pp60c-src were separately purified from the membrane fraction of neonatal rat brain by sequential column chromatographies. The novel kinase phosphorylated tyrosine residues of both forms of intact pp60c-src. The phosphorylation occurred in parallel with autophosphorylation of pp60c-src, and in both forms the final stoichiometry estimated was quite similar to that of autophosphorylation (about 5%). The enzyme also phosphorylated pp60c-src in which the kinase activity had been destroyed by an ATP analogue, p-fluorosulfonylbenzoyl 5'-adenosine. The phosphorylation site of the non-neuronal form was analyzed by sequential peptide mapping with tosylphenylalanyl chloromethyl ketone-treated trypsin and alpha-chymotrypsin. Tryptic digestion of the phosphorylated pp60c-src yielded a unique phosphopeptide that cross-reacted with an antibody specific for the carboxyl-terminal sequence of chicken pp60c-src. Digestion of the phosphopeptide with chymotrypsin yielded a product that comigrated with a synthetic phosphopeptide corresponding to the carboxyl-terminal 15 residues of chicken pp60c-src. These results clearly indicate that the carboxyl-terminal sequence of rat pp60c-src is identical to that of chicken pp60c-src, and a tyrosine residue corresponding to chicken Tyr527 is the phosphorylation site. This phosphorylation resulted in a decrease in the enolase phosphorylating activity of pp60c-src. Kinetic experiments indicated that this decrease in activity was due to a decrease in the Vmax value of pp60c-src. These findings support our previous proposal that the novel tyrosine kinase acts as a specific regulator of pp60c-src in cells.  相似文献   

8.
We demonstrate in this report that the epidermal growth factor (EGF) receptor from rat liver can be isolated by calmodulin affinity chromatography by binding in the presence of Ca2+ and elution with a Ca(2+)-chelating agent. The bulk of the EGF receptor is not eluted by a NaCl gradient in the presence of Ca2+. We ascertained the identity of the isolated receptor by immunoblot and immunoprecipitation using a polyclonal antibody against an EGF receptor from human origin. The purified receptor is autophosphorylated in tyrosine residues in an EGF-stimulated manner, and EGF-dependent phosphorylation of serine residues was also detected. Both the EGF and the transforming growth factor-alpha stimulate the tyrosine-directed protein kinase activity of the isolated receptor with similar affinities. Furthermore, we demonstrate that calmodulin inhibits the EGF-dependent tyrosine-directed protein kinase activity associated to the receptor in a concentration-dependent manner. This inhibition is partially Ca2+ dependent and is not displaced by increasing the concentration of EGF up to an EGF/calmodulin ratio of 10 (mol/mol). In addition, calmodulin was phosphorylated in an EGF-stimulated manner in the presence of a basic protein (histone) as cofactor and in the absence, but not in the presence, of Ca2+.  相似文献   

9.
Aim: We have reported the in vitro and in vivo anticancer activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) derived from a Japanese spice, wasabi. In order to obtain some clues about the mechanism of the anticancer activity, we have studied the effect of alkyl isothiocyanates (MITCs) on protein kinase activities. Methods: The anti-autophosphorylation activity of MITCs with respect to the epidermal growth factor (EGF)-stimulated receptor kinase of A431 epidermoid carcinoma cells was examined by incorporation of radioactive ATP into an acid-insoluble fraction. Their anti-phosphorylation activity with respect to the non-receptor protein kinase was analyzed by a standard SDS-PAGE method. Results: All the tested MITCs interfered with the EGF-stimulated receptor kinase activity in a dose-dependent manner, although their effects were less than 1/10 of that of erbstatin in μg/ml. On the other hand, the MITCs did not interfere with non-receptor kinases (kinase A, kinase C, tyrosine kinase and calmodulin dependent kinase III), but enhanced non-receptor tyrosine kinase. Discussion: A possible anticancer mechanism of MITCs may involve the suppression of EGF receptor kinase activity and augmentation of non-receptor PTK.  相似文献   

10.
We have shown previously that pp60c-src is a substrate for protein kinase C in vivo and that the target of protein kinase C phosphorylation in mammalian pp60c-src is serine 12. We now demonstrate that in addition to tumor promoters, all activators of phosphatidylinositol turnover that we have tested in fibroblasts (platelet-derived growth factor, fibroblast growth factor, serum, vasopressin, sodium orthovanadate, and prostaglandin F2 alpha) lead to the phosphorylation of pp60c-src at serine 12. In addition to stimulating serine 12 phosphorylation in pp60c-src, platelet-derived growth factor treatment of quiescent fibroblasts induces phosphorylation of one or two additional serine residues and one tyrosine residue within the N-terminal 16 kilodaltons of the enzyme and activates its immune complex protein-tyrosine kinase activity.  相似文献   

11.
The epidermal growth factor (EGF) receptor-associated protein tyrosine kinase activity has been suggested to play important roles in the EGF-enhanced, clathrin-coated pit-mediated receptor internalization (W. S. Chen, C. S. Lazar, M. Peonie, R. Y. Tsien, G. N. Gill, and M. G. Rosenfeld, 1987, Nature 328, 820-823) but the kinase substrate important for this process has not been identified. This study demonstrates that the EGF receptor, partially purified from A431 epidermoid carcinoma cells, catalyzes the phosphorylation of one of the two clathrin light chains, clathrin light chain a (LCa). The phosphorylation activity is stimulated by EGF and immunoprecipitated by an EGF receptor monoclonal antibody. The phosphorylation occurs exclusively on tyrosine residues. Amino acid composition of the major tryptic phosphopeptide of the EGF receptor-phosphorylated LCa corresponds closely to that of residues 1 to 97 of LCa. A stoichiometry of 0.2 mol phosphate/mol LCa was attained after 60 min at 30 degrees C and a Km value of 1.7 microM was determined for the reaction. LCa of either neuronal or non-neuronal origin could serve as a substrate. In addition to the EGF receptor tyrosine kinase, a particulate src-related protein tyrosine kinase purified from bovine spleen (C. M. E. Litwin, H.-C. Cheng, and J. H. Wang, 1991, J. Biol. Chem. 226, 2557-2566) was shown in this study to also phosphorylate the light chains. However, in contrast to the EGF receptor phosphorylation, both clathrin light chains a and b were phosphorylated by the spleen kinase, suggesting that the two tyrosine kinases have differential site specificities. Given the specificity of LCa phosphorylation by the EGF receptor, we propose that LCa phosphorylation on a tyrosine residue(s) may be important in EGF-induced receptor internalization.  相似文献   

12.
Treatment of confluent chicken embryo fibroblasts (CEFs) with trypsin results in a dose- and time-dependent increase in c-Src protein tyrosine kinase (PTK) activity. A similar, but less marked, increase in c-Src PTK activity occurs upon incubation of CEFs in calcium-free phosphate-buffered saline, which also causes a decrease in cell-substrate adhesion. The increase in c-Src PTK activity following disruption of cell-substrate adhesion correlates with a decrease in the phosphorylation of c-Src at the regulatory site, Tyr527. The phosphotyrosine phosphatase inhibitor phenylarsine oxide blocks the increase in c-Src PTK activity seen following treatment with trypsin and the morphological changes associated with the disruption of cell-substrate adhesion. In contrast, disruption of cell-substrate adhesion causes a decrease in FAK PTK activity that rapidly returns to control levels when the cells are plated on fibronection-coated dishes. Treatment of cells with cytochalasin D, which disrupts actin filaments but not cell-substrate adhesion, causes only a slight increase in c-Src PTK activity. Thus, these studies demonstrate a ligand-independent mechanism for the activation of c-Src that is consistent with its role in both cell adhesion and cell motility. Furthermore, these data suggest that similar to adhesion, loss of adhesion is not a passive process but can activate specific signaling pathways that may have significant effects on cellular function.  相似文献   

13.
The tyrosine protein kinase activities of pp60c-src and pp60v-src were compared. The activities were qualitatively similar in vitro when the src proteins were bound in an immune complex with monoclonal antibody; both proteins utilized either ATP or GTP as phosphate donors, preferred Mn2+ to Mg2+, and had similar exogenous substrate specificities. The specific activity of pp60c-src was about 10-fold lower than that of pp60v-src for exogenous substrate phosphorylation but was only 1.1- to 2-fold lower than that of pp60v-src for autophosphorylation. Six glycolytic enzymes, including three not previously identified as substrates for pp60src phosphorylation, were phosphorylated by both pp60c-src and pp60v-src. Levels of pp60c-src fourfold higher than the amount of pp60v-src in src-plasmid-transformed cells did not detectably alter the level of phosphotyrosine in cellular proteins, but increasing the expression of pp60c-src another twofold (which induces cells to form foci in monolayer culture (P.J. Johnson, P.M. Coussens, A.V. Danko, and D. Shalloway, Mol. Cell. Biol. 5:1073-1083, 1985) resulted in a threefold increase in the level of cellular protein phosphotyrosine. Immunoprecipitation and analysis of the alkali-stable phosphoproteins by two-dimensional electrophoresis showed that, in contrast to pp60v-src-transformed cells, pp36 and enolase are only weakly phosphorylated in these high-level pp60c-src overexpresser cells. Even allowing for the in vitro differences in specific activities of phosphorylation, these results suggest that the pp60c-src tyrosine protein phosphorylating activity may be restricted relative to that of pp60v-src by additional in vivo mechanisms.  相似文献   

14.
The effect of autophosphorylation and protein kinase C-catalyzed phosphorylation on the tyrosine-protein kinase activity and ligand binding affinity of the epidermal growth factor (EGF) receptor has been studied. Kinetic parameters for the phosphorylation by the receptor kinase of synthetic peptide substrates having sequences related to the 3 in vitro receptor autophosphorylation sites (tyrosine residues 1173 (P1), 1148 (P2), and 1068 (P3)) were measured. The Km of peptide P1 (residues 1164-1176) was significantly lower than that for peptides P2 (residues 1141-1151) or P3 (residues 1059-1072). The tyrosine residue 1173 was also the most rapidly autophosphorylated in purified receptor preparations, consistent with previous observations for the receptor in intact cells (Downward, J., Parker, P., and Waterfield, M. D. (1984) Nature 311, 483-485). Variation in the extent of receptor autophosphorylation from 0.1 to 2.8 mol of phosphate/mol of receptor did not influence kinase activity or EGF binding affinity either for purified receptor or receptor in membrane preparations. Phosphorylation of the EGF receptor by protein kinase C was shown to cause a 3-fold decrease in the affinity of purified EGF receptor for EGF and to reduce the receptor kinase activity. In membrane preparations, phosphorylation of the EGF receptor by protein kinase C resulted in conversion of high affinity EGF binding sites to a low affinity state. This suggests that activation of protein kinase C by certain growth promoting agents and tumor promoters is directly responsible for modulation of the affinity of the EGF receptor for its ligand EGF. The regulation of the EGF receptor function by protein kinase C is discussed.  相似文献   

15.
Biological responses to epidermal growth factor (EGF) depend on the ligand-stimulated protein tyrosine kinase activity of its receptor. To further characterize the enzymatic activity of the EGF receptor, the baculovirus expression system was used to express the cytoplasmic protein tyrosine kinase domain of the EGF receptor. Spodoptera frugiperda (Sf9) cells infected with recombinant baculovirus correctly expressed an active tyrosine kinase domain of the EGF receptor as demonstrated by 35S metabolic labeling, immunoblotting with anti-EGF receptor and anti-phosphotyrosine antibodies, and autophosphorylation analysis. The kinase domain (Mr 66,000) was purified to near homogeneity using a monoclonal anti-phosphotyrosine antibody column, providing 0.5 mg of kinase domain/liter of Sf9 cells (23% yield). The purified kinase domain exhibited a strong preference for Mn2+ compared to Mg2+. The specific activity of the kinase domain was low compared to purified, EGF-activated EGF receptor. However, the addition of sphingosine or ammonium sulfate greatly increased the activity of the kinase domain to equal or exceed the activity of ligand-activated holo EGF receptor. These results indicate that the addition of sphingosine or ammonium sulfate to the purified kinase domain can mimic the effect of EGF to induce a conformation of the holo EGF receptor which is optimal for tyrosine kinase activity. Deletion of the ligand binding domain, analogous to that which occurs in erb B, is not sufficient to fully activate the kinase, implying that EGF causes conformational changes additional to removal of an inhibitory constraint.  相似文献   

16.
We have generated a recombinant baculovirus using the high expression vector pVL941 containing the complementary DNA encoding the intracellular domain of the human epidermal growth factor receptor (EGFR-IC). Upon infection of Spodoptera frugiperda insect cells, protein tyrosine kinase-active EGFR-IC was produced. The expressed protein has a molecular weight of 61,000 and is specifically recognized by antibodies directed against peptides representing different regions of human EGFR-IC. Upon sonication of infected cells, EGFR-IC was detected in both the soluble and insoluble fractions of the cell lysate. About 20-50% of the expressed EGFR-IC was soluble. Metabolic labeling and protein analyses showed that EGFR-IC comprised 7% of newly synthesized proteins in the cytoplasmic lysate and 0.1-0.2% of the total soluble protein. We have used a three-step purification procedure (fast-Q-Sepharose and phenyl-Sepharose column chromatographies and 30% ammonium sulfate precipitation) to purify EGFR-IC to 85% purity with 15-20% recovery from the initial soluble lysate. A yield of 3-4 mg of purified EGFR-IC has been consistently produced from 20 roller bottles with 2-4 x 10(8) infected cells/bottle. The tyrosine kinase activity was retained through purification. The enzyme demonstrated much higher autophosphorylation activity in the presence of Mn2+ than Mg2+. Phosphopeptide mapping revealed the same autophosphorylation sites utilized by EGFR-IC as those identified in wild-type EGFR. EGFR-IC-catalyzed phosphorylation of either a synthetic peptide representing the major autophosphorylation site or angiotensin II showed that the baculovirus-expressed EGFR-IC exhibits similar enzymatic kinetic characteristics to the intact activated EGFR kinase.  相似文献   

17.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been found to cause increases in cellular levels of pp60src, a protein tyrosine kinase in hepatocytes from the rat and guinea pig, in the thymus of the mouse in vivo and in NIH-3T3 mouse fibroblast cell lines in vitro. Such cellular changes take place in vivo at early stages of TCDD poisoning (as early as one day after treatment in the case of mouse thymus) and at very low doses (single intraperitoneal injections of 1 μg/kg for guinea pigs, 25 μg/ kg for rats, and 30 μg/kg for mice). In addition such an effect of TCDD was observed only in a TCDD-responsive mouse strain but not in a nonresponsive strain. This effect of TCDD is a long-lasting one (eg, even 25 days after single dosing, the levels of pp60src in the hepatic membrane remained high). In vitro this effect was observed in a wild-type 3T3 cell line but was more pronounced in one of the transfected lines with a v-src gene, a virus-derived oncogene known to code for pp60src protein.  相似文献   

18.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

19.
The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized cells, all antibodies were able to activate the EGF-R tyrosine kinase, as measured by EGF-R autophosphorylation and phosphorylation of other substrates on tyrosine residues. EGF-R tyrosine kinase activation correlated strongly with the induction of EGF-R dimerization. (i) Both processes specifically occurred in a narrow antibody concentration range; (ii) both processes required the presence of detergent; and (iii) both processes depended on antibody bivalence since monovalent Fab fragments were inactive yet regained full activity after cross-linking by a second bivalent antibody. These data demonstrate that antibody bivalence is essential and sufficient for EGF-R activation and that activation occurs regardless of the EGF-R epitope recognized. Finally, EGF-R dimerization was shown not to depend on receptor autophosphorylation since it still occurred in the absence of ATP. Also, partial inhibition of the tyrosine kinase activity by the specific EGF-R tyrosine kinase inhibitor tyrphostin AG 213 did not affect formation of EGF-R dimers. Taken together these results demonstrate that induction of EGF-R dimerization is sufficient and in case of antibody action, essential, for activation of the EGF-R tyrosine kinase and thus provide strong support for an intermolecular mechanism of EGF-R tyrosine kinase activation.  相似文献   

20.
The present study demonstrates that signal transduction through a receptor lacking intrinsic tyrosine protein kinase activity involves a rapid and potent phosphorylation of a non-receptor tyrosine protein kinase in the membranes. Vasoactive intestinal peptide (VIP) stimulates phosphorylation of a membrane protein with a M.W. of 56 KD (pp60) in the cultured chick embryonic retinal pigment epithelium. VIP stimulates phosphorylation of the pp60 with such efficiency and potency that the maximal phosphorylation has been observed at the earliest time (3 minutes at 1 x 10(-6)M VIP) and the lowest concentration (1 x 10(-11)M for 20 minutes) examined. Western blot analysis with a monoclonal antibody anti-pp60src (GD11, Parsons et al., J. Virol. 51, 272-282, 1984) indicates that the pp60 is the pp60c-src, a normal cell oncogene product with intrinsic tyrosine protein kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号