首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vertical distribution of OP11, OD1 and SR1 divisions in the oxycline and in the anoxic water column of Lake Pavin, a freshwater permanently stratified mountain lake in France, was determined by temporal temperature gel gradient electrophoresis and 16S rRNA clone libraries. Gradual changes in the community structure were noted in relation to environmental variables along the oxidized/reduced environment. In addition, a separate effort to identify members of these lineages in the oxic mixolimnion identified sequences affiliated to SR1 and OP11 divisions, indicating that they are more widespread than previously expected.  相似文献   

2.
Culture-independent molecular phylogenetic methods were used to explore the breadth of diversity and environmental distribution of members of the division-level "candidate" phylogenetic group WS6, recently discovered in a contaminated aquifer and with no cultivated representatives. A broad diversity of WS6-affiliated sequences were cloned from 7 of 12 environments investigated: mainly from anaerobic sediment environments. The number of sequences representing the WS6 candidate division was increased from 3 to 60 in this study. The extent of phylogenetic divergence (sequence difference) in this candidate division was found to be among the largest of any known bacterial division. This indicates that organisms representing the WS6 phylogenetic division offer a broad diversity of undiscovered biochemical and metabolic novelty. These results provide a framework for the further study of these evidently important kinds of organisms and tools, the sequences, with which to do so.  相似文献   

3.
Culture-independent molecular phylogenetic methods were used to explore the breadth of diversity and environmental distribution of members of the division-level “candidate” phylogenetic group WS6, recently discovered in a contaminated aquifer and with no cultivated representatives. A broad diversity of WS6-affiliated sequences were cloned from 7 of 12 environments investigated: mainly from anaerobic sediment environments. The number of sequences representing the WS6 candidate division was increased from 3 to 60 in this study. The extent of phylogenetic divergence (sequence difference) in this candidate division was found to be among the largest of any known bacterial division. This indicates that organisms representing the WS6 phylogenetic division offer a broad diversity of undiscovered biochemical and metabolic novelty. These results provide a framework for the further study of these evidently important kinds of organisms and tools, the sequences, with which to do so.  相似文献   

4.
The mesothermal outflow zones (50-65°C) of geothermal springs often support an extensive zone of green and orange laminated microbial mats. In order to identify and compare the microbial inhabitants of morphologically similar green-orange mats from chemically and geographically distinct springs, we generated and analyzed small-subunit ribosomal RNA (rRNA) gene amplicons from six mesothermal mats (four previously unexamined) in Yellowstone National Park. Between three and six bacterial phyla dominated each mat. While many sequences bear the highest identity to previously isolated phototrophic genera belonging to the Cyanobacteria, Chloroflexi, and Chlorobi phyla, there is also frequent representation of uncultured, unclassified members of these groups. Some genus-level representatives of these dominant phyla were found in all mats, while others were unique to a single mat. Other groups detected at high frequencies include candidate divisions (such as the OP candidate clades) with no cultured representatives or complete genomes available. In addition, rRNA genes related to the recently isolated and characterized photosynthetic acidobacterium "Candidatus Chloracidobacterium thermophilum" were detected in most mats. In contrast to microbial mats from well-studied hypersaline environments, the mesothermal mats in this study accrue less biomass and are substantially less diverse, but have a higher proportion of known phototrophic organisms. This study provides sequences appropriate for accurate phylogenetic classification and expands the molecular phylogenetic survey of Yellowstone microbial mats.  相似文献   

5.
In a previous study, we analyzed the molecular diversity of Planctomycetales by PCR amplification and sequencing of 16S rRNA clone libraries generated from a municipal wastewater plant, using planctomycete-specific and universal primer sets (R. Chouari, D. Le Paslier, P. Daegelen, P. Ginestet, J. Weissenbach, and A. Sghir, Appl. Environ. Microbiol. 69:7354-7363, 2003). Only a small fraction (4%) of the 16S rRNA gene sequences of the digester clone library corresponded to the Planctomycetales division. Importantly, 85.9% of the digester clone sequences are grouped into two different clusters named WWE1 (81.4% of the sequences) and WWE2 (4.5%) and are distantly affiliated with unidentified bacterial sequences retrieved from a methanogenic reactor community and from a termite gut, respectively. In phylogenetic analysis using 16S rRNA gene sequence representatives of the main phylogenetic bacterial divisions, the two clusters are monophyletic, branch apart from each other, and are distantly related to Planctomycetales and other bacterial divisions. A novel candidate division is proposed for WWE1, while the WWE2 cluster strongly affiliates with the recently proposed Lentisphearae phylum. We designed and validated a 16S rRNA probe targeting WWE1 16S rRNA sequences by both fluorescent in situ hybridization (FISH) and dot blot hybridization (DBH). Results of FISH analysis show that WWE1 representative microorganisms are rods or filamentous shaped, while DBH shows that WWE1 accounts for 12% of the total bacterial rRNA within the anaerobic digester. The remaining 16S rRNA gene sequences are affiliated with Verrucomicrobia or recently described candidate divisions with no known pure culture representatives, such as OD1, BRC1, or NBL-UPA2, making up less than 3.5% of the clone library, respectively. This inventory expands the known diversity of the latter bacterial division-level lineages.  相似文献   

6.
Novel Division Level Bacterial Diversity in a Yellowstone Hot Spring   总被引:32,自引:1,他引:31       下载免费PDF全文
A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609–1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among >300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (≥98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing δ-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These results expand substantially our knowledge of the extent of bacterial diversity and call into question the commonly held notion that Archaea dominate hydrothermal environments. Finally, the currently known extent of division level bacterial phylogenetic diversity is collated and summarized.  相似文献   

7.
In a previous study, we analyzed the molecular diversity of Planctomycetales by PCR amplification and sequencing of 16S rRNA clone libraries generated from a municipal wastewater plant, using planctomycete-specific and universal primer sets (R. Chouari, D. Le Paslier, P. Daegelen, P. Ginestet, J. Weissenbach, and A. Sghir, Appl. Environ. Microbiol. 69:7354-7363, 2003). Only a small fraction (4%) of the 16S rRNA gene sequences of the digester clone library corresponded to the Planctomycetales division. Importantly, 85.9% of the digester clone sequences are grouped into two different clusters named WWE1 (81.4% of the sequences) and WWE2 (4.5%) and are distantly affiliated with unidentified bacterial sequences retrieved from a methanogenic reactor community and from a termite gut, respectively. In phylogenetic analysis using 16S rRNA gene sequence representatives of the main phylogenetic bacterial divisions, the two clusters are monophyletic, branch apart from each other, and are distantly related to Planctomycetales and other bacterial divisions. A novel candidate division is proposed for WWE1, while the WWE2 cluster strongly affiliates with the recently proposed Lentisphearae phylum. We designed and validated a 16S rRNA probe targeting WWE1 16S rRNA sequences by both fluorescent in situ hybridization (FISH) and dot blot hybridization (DBH). Results of FISH analysis show that WWE1 representative microorganisms are rods or filamentous shaped, while DBH shows that WWE1 accounts for 12% of the total bacterial rRNA within the anaerobic digester. The remaining 16S rRNA gene sequences are affiliated with Verrucomicrobia or recently described candidate divisions with no known pure culture representatives, such as OD1, BRC1, or NBL-UPA2, making up less than 3.5% of the clone library, respectively. This inventory expands the known diversity of the latter bacterial division-level lineages.  相似文献   

8.
The diversity of bacteria and archaea associating on the surface and interior of maize roots (Zea mays L.) was investigated. A bacterial 16S rDNA primer was designed to amplify bacterial sequences directly from maize roots by PCR to the exclusion of eukaryotic and chloroplast DNA. The mitochondrial sequence from maize was easily separated from the PCR-amplified bacterial sequences by size fractionation. The culturable component of the bacterial community was also assessed, reflecting a community composition different from that of the clone library. The phylogenetic overlap between organisms obtained by cultivation and those identified by direct PCR amplification of 16S rDNA was 48%. Only 4 bacterial divisions were found in the culture collection, which represented 27 phylotypes, whereas 6 divisions were identified in the clonal analysis, comprising 74 phylotypes, including a member of the OP10 candidate division originally described as a novel division level lineage in a Yellowstone hot spring. The predominant group in the culture collection was the actinobacteria and within the clone library, the a-proteobacteria predominated. The population of maize-associated proteobacteria resembled the proteobacterial population of a typical soil community within which resided a subset of specific plant-associated bacteria, such as Rhizobium- and Herbaspirillum-related phylotypes. The representation of phylotypes within other divisions (OP10 and Acidobacterium) suggests that maize roots support a distinct bacterial community. The diversity within the archaeal domain was low. Of the 50 clones screened, 6 unique sequence types were identified, and 5 of these were highly related to each other (sharing 98% sequence identity). The archaeal sequences clustered with good bootstrap support near Marine group I (crenarchaea) and with Marine group II (euryarchaea) uncultured archaea. The results suggest that maize supports a diverse root-associated microbial community composed of species that for the first time have been described as inhabitants of a plant-root environment.  相似文献   

9.
A culture-independent molecular phylogenetic approach was used to survey constituents of microbial communities associated with an aquifer contaminated with hydrocarbons (mainly jet fuel) and chlorinated solvents undergoing intrinsic bioremediation. Samples were obtained from three redox zones: methanogenic, methanogenic-sulfate reducing, and iron or sulfate reducing. Small-subunit rRNA genes were amplified directly from aquifer material DNA by PCR with universally conserved or Bacteria- or Archaea-specific primers and were cloned. A total of 812 clones were screened by restriction fragment length polymorphisms (RFLP), approximately 50% of which were unique. All RFLP types that occurred more than once in the libraries, as well as many of the unique types, were sequenced. A total of 104 (94 bacterial and 10 archaeal) sequence types were determined. Of the 94 bacterial sequence types, 10 have no phylogenetic association with known taxonomic divisions and are phylogenetically grouped in six novel division level groups (candidate divisions WS1 to WS6); 21 belong to four recently described candidate divisions with no cultivated representatives (OP5, OP8, OP10, and OP11); and 63 are phylogenetically associated with 10 well-recognized divisions. The physiology of two particularly abundant sequence types obtained from the methanogenic zone could be inferred from their phylogenetic association with groups of microorganisms with a consistent phenotype. One of these sequence types is associated with the genus Syntrophus; Syntrophus spp. produce energy from the anaerobic oxidation of organic acids, with the production of acetate and hydrogen. The organism represented by the other sequence type is closely related to Methanosaeta spp., which are known to be capable of energy generation only through aceticlastic methanogenesis. We hypothesize, therefore, that the terminal step of hydrocarbon degradation in the methanogenic zone of the aquifer is aceticlastic methanogenesis and that the microorganisms represented by these two sequence types occur in syntrophic association.  相似文献   

10.
11.
In 1998, a cultivation‐independent survey of the microbial community in Obsidian Pool, Yellowstone National Park, detected 12 new phyla within the Domain Bacteria. These were dubbed ‘candidate divisions’ OP1 to OP12. Since that time the OP10 candidate division has been commonly detected in various environments, usually as part of the rare biosphere, but occasionally as a predominant community component. Based on 16S rRNA gene phylogeny, OP10 comprises at least 12 class‐level subdivisions. However, despite this broad ecological and evolutionary diversity, all OP10 bacteria have eluded cultivation until recently. In 2011, two reference species of OP10 were taxonomically validated, removing the phylum from its ‘candidate’ status. Construction of a highly resolved phylogeny based on 29 universally conserved genes verifies its standing as a unique bacterial phylum. In the following paper we summarize what is known and what is suspected about the newest described bacterial phylum, the Armatimonadetes.  相似文献   

12.
13.
To assess the distribution and diversity of members of the recently identified bacterial kingdom Acidobacterium, members of this kingdom present in 43 environmental samples were surveyed by PCR amplification. A primer designed to amplify rRNA gene sequences (ribosomal DNAs [rDNAs]) from most known members of the kingdom was used to interrogate bulk DNA extracted from the samples. Positive PCR results were obtained with all temperate soil and sediment samples tested, as well as some hot spring samples, indicating that members of this kingdom are very widespread in terrestrial environments. PCR primers specific for four phylogenetic subgroups within the kingdom were used in similar surveys. All four subgroups were detected in most neutral soils and some sediments, while only two of the groups were seen in most low-pH environments. The combined use of these primers allowed identification of a novel lineage within the kingdom in a hot spring environment. Phylogenetic analysis of rDNA sequences from our survey and the literature outlines at least six major subgroups within the kingdom. Taken together, these data suggest that members of the Acidobacterium kingdom are as genetically and metabolically diverse, environmentally widespread and perhaps as ecologically important as the well-known Proteobacteria and gram-positive bacterial kingdoms.  相似文献   

14.
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the α-, γ- and δ-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13°N. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Denaturing gradient gel electrophoresis of PCR-amplified 16S ribosomal DNA (rDNA) fragments has frequently been applied to the fingerprinting of natural bacterial populations (PCR/DGGE). In this study, sequences of bacterial universal primers frequently used in PCR/DGGE were compared with 16S rDNA sequences that represent recently proposed divisions in the domain Bacteria. We found mismatches in 16S rDNA sequences from some groups of bacteria. Inosine residues were then introduced into the bacterial universal primers to reduce amplification biases caused by these mismatches. Using the improved primers, phylotypes affiliated with Verrucomicrobia and candidate division OP11, were detected in DGGE fingerprints of groundwater populations, which have not been detected by PCR/DGGE with conventional universal primers.  相似文献   

16.
Despite recent advances in metagenomic and single-cell genomic sequencing to investigate uncultivated microbial diversity and metabolic potential, fundamental questions related to population structure, interactions, and biogeochemical roles of candidate divisions remain. Numerous molecular surveys suggest that stratified ecosystems manifesting anoxic, sulfidic, and/or methane-rich conditions are enriched in these enigmatic microbes. Here we describe diversity, abundance, and cooccurrence patterns of uncultivated microbial communities inhabiting the permanently stratified waters of meromictic Sakinaw Lake, British Columbia, Canada, using 454 sequencing of the small-subunit rRNA gene with three-domain resolution. Operational taxonomic units (OTUs) were affiliated with 64 phyla, including more than 25 candidate divisions. Pronounced trends in community structure were observed for all three domains with eukaryotic sequences vanishing almost completely below the mixolimnion, followed by a rapid and sustained increase in methanogen-affiliated (∼10%) and unassigned (∼60%) archaeal sequences as well as bacterial OTUs affiliated with Chloroflexi (∼22%) and candidate divisions (∼28%). Network analysis revealed highly correlated, depth-dependent cooccurrence patterns between Chloroflexi, candidate divisions WWE1, OP9/JS1, OP8, and OD1, methanogens, and unassigned archaeal OTUs indicating niche partitioning and putative syntrophic growth modes. Indeed, pathway reconstruction using recently published Sakinaw Lake single-cell genomes affiliated with OP9/JS1 and OP8 revealed complete coverage of the Wood-Ljungdahl pathway with potential to drive syntrophic acetate oxidation to hydrogen and carbon dioxide under methanogenic conditions. Taken together, these observations point to previously unrecognized syntrophic networks in meromictic lake ecosystems with the potential to inform design and operation of anaerobic methanogenic bioreactors.  相似文献   

17.
We have constructed a large fosmid library from a mesophilic anaerobic digester and explored its 16S rDNA diversity using a high-density filter DNA–DNA hybridization procedure. We identified a group of 16S rDNA sequences forming a new bacterial lineage named WWE3 (Waste Water of Evry 3). Only one sequence from the public databases shares a sequence identity above 80% with the WWE3 group which hence cannot be affiliated to any known or candidate prokaryotic division. Despite representing a non-negligible fraction (5% of the 16S rDNA sequences) of the bacterial population of this digester, the WWE3 bacteria could not have been retrieved using the conventional 16S rDNA amplification procedure due to their unusual 16S rDNA gene sequence. WWE3 bacteria were detected by polymerase chain reaction (PCR) in various environments (anaerobic digesters, swine lagoon slurries and freshwater biofilms) using newly designed specific PCR primer sets. Fluorescence in situ hybridization (FISH) analysis of sludge samples showed that WWE3 microorganisms are oval-shaped and located deep inside sludge flocs. Detailed phylogenetic analysis showed that WWE3 bacteria form a distinct monophyletic group deeply branching apart from all known bacterial divisions. A new bacterial candidate division status is proposed for this group.  相似文献   

18.
During the Arctic summer, bacteria are active above the permafrost in an environment with sharp temperature and oxygen gradients. The present study addressed the diversity and abundance of bacteria in soil layers near the surface and above the permafrost of the rim and center of a low-centered polygon in the Lena Delta, Siberia. 16S rRNA gene clone libraries revealed the presence of all major soil bacterial groups and of the candidate divisions OD1, OP5, and OP11, and indicated a small-scale heterogeneity of these polygonal tundra soils. The diversity at the top of the elevated polygon rim was significantly different from that of the bottom and from both water-saturated sites of the polygon's center. The overall species-level diversity was very high (Shannon index of 5.3) but varied within the sites and decreased towards the permafrost table, coinciding with decreasing dissolved organic carbon (DOC) and phosphate concentrations. According to the number of operational taxonomical units (OTUs) and cells visualized by fluorescence in-situ hybridization, Bacteroidetes and Actinobacteria were the dominant members of the bacterial community in all sites. Bacteroidetes contributed almost 50% to all Bacteria cells while sequences affiliated with Bacteroidetes/Chlorobi represented on average 23% of all OTUs. Our results provide evidence of the extremely diverse bacterial communities present in permafrost soils and of the influence of nutrient concentrations, oxygen, and DOC on diversity.  相似文献   

19.
We carried out a 16S rDNA-based molecular survey of the prokaryotic diversity associated with the chitin tubes of the giant vent tubeworm Riftia pachyptila (collected at the East Pacific Rise, 9 degrees N and 13 degrees N). Scanning electron microscopy showed dense microbial populations, particularly on the external surface of the middle and upper tube regions, which included very diverse prokaryotic morphotypes. We used archaeal- and bacterial-specific primers for polymerase chain reaction (PCR) amplification, but only bacterial amplicons were obtained. We analysed a total of 87 clones. Most belonged to the epsilon-Proteobacteria, but also to the delta-, alpha- and gamma-Proteobacteria. A broad diversity of phylotypes belonging to other bacterial divisions was detected, including Verrucomicrobia, the Cytophaga-Flavobacterium-Bacteroides group and the candidate division OP8. We also retrieved a sequence, R76-B150, of uncertain phylogenetic affiliation, which could represent a novel candidate division. The sequence of the R. pachyptilagamma-proteobacterial endosymbiont was not detected. The bacterial diversity found suggests that complex metabolic interactions, particularly based on sulphur chemistry, may be occurring in different microniches of the R. pachyptila tubes.  相似文献   

20.
To assess the distribution and diversity of members of the recently identified bacterial kingdom Acidobacterium, members of this kingdom present in 43 environmental samples were surveyed by PCR amplification. A primer designed to amplify rRNA gene sequences (ribosomal DNAs [rDNAs]) from most known members of the kingdom was used to interrogate bulk DNA extracted from the samples. Positive PCR results were obtained with all temperate soil and sediment samples tested, as well as some hot spring samples, indicating that members of this kingdom are very widespread in terrestrial environments. PCR primers specific for four phylogenetic subgroups within the kingdom were used in similar surveys. All four subgroups were detected in most neutral soils and some sediments, while only two of the groups were seen in most low-pH environments. The combined use of these primers allowed identification of a novel lineage within the kingdom in a hot spring environment. Phylogenetic analysis of rDNA sequences from our survey and the literature outlines at least six major subgroups within the kingdom. Taken together, these data suggest that members of the Acidobacterium kingdom are as genetically and metabolically diverse, environmentally widespread and perhaps as ecologically important as the well-known Proteobacteria and gram-positive bacterial kingdoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号