首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The basic region of Fos mediates specific DNA binding.   总被引:26,自引:2,他引:24       下载免费PDF全文
The DNA-binding domains of the members of the Fos and Jun families of proteins consist of a basic region followed by a dimerizing segment with heptad repeats of leucine. Fos-Jun heterodimers and Jun alone, but not Fos alone, bind to the symmetrical sequences TGACTCA (AP-1 site) or TGACGTCA (cAMP response element or CRE). We set out to test the hypothesis that in the Fos-Jun heterodimer the basic region of Fos confers specific DNA-binding properties equivalent to the contribution of the basic region of Jun. Fos-Jun chimeric proteins were prepared consisting of the basic region of one protein joined to the leucine repeat of the other. Heterodimers with mixed Fos and Jun leucine repeat segments showed high affinity binding to the AP-1 site or CRE whether they contained two basic regions from Jun, two basic regions from Fos, or one from each source. Heterodimers with two Fos basic regions showed somewhat greater affinity for the CRE and AP-1 site than the heterodimer with two Jun basic regions. The DNA sequence specificity and the purine and phosphate DNA contact sites for each heterodimer were similar. We conclude that in the Fos-Jun heterodimer the basic region of Fos contributes specific DNA-binding properties equivalent to those of Jun. Our results support a model in which the Fos and Jun basic regions of the Fos-Jun heterodimer each interact with symmetrical DNA half sites.  相似文献   

5.
6.
7.
8.
9.
10.
The therapeutic efficacy of lithium in the treatment of mood disorders is delayed and only observed after chronic administration, a temporal profile that suggests alterations at the genomic level. Lithium has been demonstrated to modulate AP-1 DNA binding activity as well as the expression of genes regulated by AP-1, but the mechanisms underlying these effects have not been fully elucidated. In the present study, we found that the lithium-induced increases in AP-1 DNA binding activity were accompanied by increases in p-cJun and cJun levels in SH-SY5Y cells. Lithium also increased cJun-mediated reporter gene expression in a dose-dependent manner, with significant effects observed at therapeutically relevant concentrations. Lithium's effects on cJun-mediated reporter gene expression in SH-SY5Y cells were more pronounced in the absence of myo-inositol and were blocked by protein kinase C (PKC) inhibitors and by cotransfection with a PKCalpha dominant-negative mutant. Chronic in vivo lithium administration increased AP-1 DNA binding activity in frontal cortex and hippocampus and also increased the levels of the phosphorylated, active forms of c-Jun NH2-terminal kinases (JNKs) in both brain regions. These results demonstrate that lithium activates the JNK signaling pathway in rat brain during chronic in vivo administration and in human cells of neuronal origin in vitro; in view of the role of JNKs in regulating various aspects of neuronal function and their well-documented role in regulating gene expression, these effects may play a major role in lithium's long-term therapeutic effects.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号