首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By regulating the structure of chromatin, ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in the maintenance, transmission and expression of the eukaryotic genome. Although all known chromatin-remodeling complexes contain an ATPase as a central motor subunit, a number of distinct classes have been recognized. Recent studies have emphasized a more extensive functional diversification among closely related chromatin remodeling complexes than previously anticipated. Here, we discuss recent insights in the functional differences between two evolutionary conserved subclasses of SWI/SNF-related chromatin remodeling factors. One subfamily comprises yeast SWI/SNF, fly BAP and mammalian BAF, whereas the other subfamily includes yeast RSC, fly PBAP and mammalian PBAF. We review the subunit composition, conserved protein modules and biological functions of each of these subclasses of SWI/SNF remodelers. In particular, we will focus on the roles of specific subunits in developmental gene control and human diseases. Recent findings suggest that functional diversification among SWI/SNF complexes allows the eukaryotic cell to fine-tune and integrate the execution of diverse biological programs involving the expression, maintenance and duplication of its genome.  相似文献   

2.
3.
The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease.To realize the full potential of CPCs for therapeutic purposes,it is essenti...  相似文献   

4.
Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC’s presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.  相似文献   

5.
6.
7.
8.
An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17–18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone–DNA interactions.  相似文献   

9.
Fan HY  He X  Kingston RE  Narlikar GJ 《Molecular cell》2003,11(5):1311-1322
One hallmark of ATP-dependent remodeling complexes is the ability to make nucleosomal DNA accessible to regulatory factors. We have compared two prominent human ATP-dependent remodelers, BRG1 from the SWI/SNF family and SNF2h from the ISWI family, for their abilities to make a spectrum of nucleosomal sites accessible. By measuring rates of remodeling at seven different sites on a mononucleosome and at six different sites on the central nucleosome of a trinucleosome, we have found that BRG1 opens centrally located sites more than an order of magnitude better than SNF2h. We provide evidence that this capability of BRG1 is caused by its ability to create DNA loops on the surface of a nucleosome, even when that nucleosome is constrained by adjacent nucleosomes. This specialized ability to make central sites accessible should allow SWI/SNF family complexes to facilitate binding of nuclear factors in chromatin environments where adjacent nucleosomes might otherwise constrain mobility.  相似文献   

10.
11.
12.
Elucidating the mechanism of ATP-dependent chromatin remodeling is one of the largest challenges in the field of gene regulation. One of the missing pieces in understanding this process is detailed structural information on the enzymes that catalyze the remodeling reactions. Here we use a combination of subunit radio-iodination and scanning transmission electron microscopy to determine the subunit stoichiometry and native molecular weight of the yeast SWI/SNF complex. We also report a three-dimensional reconstruction of yeast SWI/SNF derived from electron micrographs.  相似文献   

13.
14.
Protein complexes of the SWI/SNF family remodel nucleosome structure in an ATP-dependent manner. Each complex contains between 8 and 15 subunits, several of which are highly conserved between yeast, Drosophila, and humans. We have reconstituted an ATP-dependent chromatin remodeling complex using a subset of conserved subunits. Unexpectedly, both BRG1 and hBRM, the ATPase subunits of human SWI/SNF complexes, are capable of remodeling mono-nucleosomes and nucleosomal arrays as purified proteins. The addition of INI1, BAF155, and BAF170 to BRG1 increases remodeling activity to a level comparable to that of the whole hSWI/SNF complex. These data define the functional core of the hSWI/SNF complex.  相似文献   

15.
16.
ATP-dependent chromatin remodeling is performed by multi-subunit protein complexes. Over the last years, the identity of these factors has been unveiled in yeast and many parallels have been drawn with animal and plant systems, indicating that sophisticated chromatin transactions evolved prior to their divergence. Here we review current knowledge pertaining to the molecular mode of action of ATP-dependent chromatin remodeling, from single molecule studies to genome-wide genetic and proteomic studies. We focus on the budding yeast versions of SWI/SNF, RSC, DDM1, ISWI, CHD1, INO80 and SWR1.  相似文献   

17.
ATP-dependent chromatin remodeling is performed by multi-subunit protein complexes. Over the last years, the identity of these factors has been unveiled in yeast and many parallels have been drawn with animal and plant systems, indicating that sophisticated chromatin transactions evolved prior to their divergence. Here we review current knowledge pertaining to the molecular mode of action of ATP-dependent chromatin remodeling, from single molecule studies to genome-wide genetic and proteomic studies. We focus on the budding yeast versions of SWI/SNF, RSC, DDM1, ISWI, CHD1, INO80 and SWR1.  相似文献   

18.
The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.  相似文献   

19.
20.
Global role for chromatin remodeling enzymes in mitotic gene expression   总被引:27,自引:0,他引:27  
Krebs JE  Fry CJ  Samuels ML  Peterson CL 《Cell》2000,102(5):587-598
Regulation of eukaryotic gene expression requires ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, and histone acetyltransferases, such as Gcn5p. Here we show that SWI/SNF remodeling controls recruitment of Gcn5p HAT activity to many genes in late mitosis and that these chromatin remodeling enzymes play a role in regulating mitotic exit. In contrast, interphase expression of GAL1, HIS3, PHO5, and PHO8 is accompanied by SWI/SNF-independent recruitment of Gcn5p HAT activity. Surprisingly, prearresting cells in late mitosis imposes a requirement for SWI/SNF in recruiting Gcn5p HAT activity to the GAL1 promoter, and GAL1 expression also becomes dependent on both chromatin remodeling enzymes. We propose that SWI/SNF and Gcn5p are globally required for mitotic gene expression due to the condensed state of mitotic chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号