首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrophysiological properties of a hormone-dependent, differentiated thyroid epithelial cell strain were studied using intracellular microelectrodes. The average membrane potential of solitary, isolated cells was –78.4 ± 1.3 mV. The membrane potential depolarized 55 mV per tenfold increase in extracellular potassium concentation. Weak electrical coupling was recorded between contiguous cells. Like tyroid cells in vivo, these cells did not generate action potentials. In some cells a spontaneous, slow transition in the membrane potential from –80mV to –30 mV was accompanied by an increase in input resistance. Membrane potential transitions could be induced by perfusing cells with isotonic Hanks solutions saturated with CO2 (pH = 5.5) or by perfusing cells with hypotonic Hanks solutions (190–290 mOsm/kg). Membrane potential transitions were due to a decreased potassium permeability. Noradrenaline elicted both a fast depolarization and a slow depolarization. The fast depolarization was due to an increase in conductance of Na+ channels and of Cl channels. Intracellular injection of Ca++ elicited the fast depolarization. Intracellular injection of EGTA or cobalt abolished the fast depolarization. Replacemnt of extracellular Ca++ by Mg++ did not affect the fast depolarization. Thus, the fast depolarization was due to accumulation of intracellular Ca++. The fast depolarization was abolished by the alpha adrenergic blocker phentolamine (10–6 M), and was not abolished by the beta adrenergic blocker propranolol (10–5 M).  相似文献   

2.
Platelet membrane potential as a modulator of aggregating mechanisms   总被引:1,自引:0,他引:1  
The membrane potential of platelets suspended in physiological medium and membrane potential changes induced by high potassium concentrations, ouabain and cooling have been measured using a cyanine fluorescent dye (3,3'-dipropylthiodicarbocyanine) [corrected]. The membrane potential of platelets suspended in physiological medium was -63.8 mV. High potassium concentrations, ouabain and cooling induced depolarization of platelet membrane. Depolarization using the above procedures enhanced platelet aggregation induced by ADP, adrenaline and collagen. These results suggest that the membrane potential could modulate platelet activity.  相似文献   

3.
To explore the regulation of cytosolic sodium ion activity in the frog sartorius, we used Na(+)-selective microelectrodes to monitor intracellular sodium ion activity in situations of lowering external sodium concentration and elevating external potassium concentration. Reductions of 20%, 40%, 60% and 80% in extracellular sodium concentration produced slight but statistically insignificant changes in the membrane potential of the muscle. However, cytosolic sodium ion activity decreased significantly from 10.0 +/- 1.1 mM to 7.8 +/- 1.1 mM, 7.1 +/- 1.4 mM, 6.5 +/- 1.2 mM and 5.9 +/- 1.1 mM, respectively. In addition, elevation of the external potassium concentration from 2 mM to 12 mM, 32 mM and 62 mM caused respective stepwise depolarization of membrane potential from -87.2 +/- 1.6 mV to -62.4 +/- 3.6 mV, -45.4 +/- 3.0 mV, -27.2 +/- 1.8 mV. Under these conditions, the cytosolic sodium ion activity decreased from 10.5 +/- 1.4 mM to 7.3 +/- 1.6 mM, 6.4 +/- 1.1 mM and 5.2 +/- 0.8 mM, respectively. The results illustrate that the net sodium flux is out of cell either in the reduction of sodium chemical gradient or in the potassium depolarization across the cell membrane.  相似文献   

4.
This study concerns the effects of ions on the shell-secreting membrane of clam mantles. The average resting potentials were --47 mV for freshwater mantles and --60 mV for marine mantles. Elevation of potassium in the absence of chloride gave a maximal slope of depolarization equivalent to 59 mV for a 10-fold change in the marine form but much less in the freshwater form. In normal potassium, a 10- fold reduction in calcium produced a hyperpolarization of 6 mV for the freshwater mantle. Neither reduction nor elevation of calcium affected the potential of marine mantles in the presence of normal potassium, but a hyperpolarization of 8 mV occurred when calcium was deleted in a low-potassium medium. Elevated calcium reduced the depolarization induced by raised potassium in both species and resulted in an increased effective membrane resistance in marine mantles. Lowered calcium enhanced the hyperpolarization caused by reduction in potassium in freshwater mantles but not in the marine species. Replacement of chloride by large anions produced transient depolarization in both freshwater and marine mantles and resulted in a maintained increased effective membrane resistance in marine mantles. The effects of sodium and magnesium on the membrane potential were not significant in normal potassium. We conclude that the secretory membrane of freshwater and marine clam mantles is permeable mainly to potassium and chloride, and that responses of the membrane potential to calcium are mediated through its effect on the permeability to potassium.  相似文献   

5.
A model describing slow oscillations of membrane potential in molluscan neurons is suggested. It is based on the view that the depolarization phase is due to the slow calcium current, whereas the hyperpolarization phase is due to the potassium current activated by intracellular Ca ions. It is shown that depending on values of the parameters of the model there are three possible types of electrical activity of the neurons: stable membrane hyperpolarization up to the resting potential which is between ?49 and ?53 mV; slow oscillations of membrane potential from ?30 to ?60 mV, with a period of 12–17 sec, and stable membrane depolarization to between ?40 and ?30 mV, which may lead to the onset of stable rhythmic activity of these neurons. Dependence of the amplitude of the oscillations of potential on the extracellular concentration of Ca, K, and Na ions was calculated and agrees qualitatively with the experimental data of Barker and Gainer [4].  相似文献   

6.
The membrane potential of primitive red cells from 4- and 6-day old chick embryos has been determined using the fluorescent dye Dis-C3-(5). At day 4 the membrane potential Em was -44 mV for pH 7.4 and 20 degrees C and -36 mV at day 6. Both values are far removed from the equilibrium potential for chloride, which is about -14 mV at day 6. Changes in the external potassium, sodium or chloride concentration were without effect on the membrane potential, except at very high potassium concentrations, where a small but significant depolarization was observed at day 6. The measurements gave the same results in the absence or presence of the anion exchange blocking agent DIDS. Three pieces of evidence indicate that the membrane potential of primitive red cells is primarily caused by an electrogenic H+ conductance: 1) The measured membrane potential of -36 mV at day 6 is close to the previously determined proton equilibrium potential (Baumann and Haller, 1983) EH + of -36 mV. 2) Addition of the electrosilent Cl-/OH- exchanger tributyltin causes a significant depolarization of about 20 mV at day 4 and about 14 mV at day 6. 3) Measurement of hydrogen ion fluxes demonstrate a potential dependent proton conductance, which increases with depolarization. These results indicate that large qualitative differences exist with regard to the mechanisms involved in the generation of membrane potential and hydrogen distribution between red cell and plasma of embryonic and adult chicken.  相似文献   

7.
The rabbit main pulmonary artery (RMPA) has frequently been used for studies of contraction, membrane properties, and ion fluxes. The resting membrane potential (Em) of the smooth muscle cells of the RMPA is close to -60 mV. The diffusion potential calculated from ion concentrations and permeabilities is -31 to -40 mV, which suggests that electrogenic ion pumping contributes to the actual Em. Circumferential strips of RMPA possess cablelike properties with a space constant lambda of 1.9 mm. Contraction of RMPA to high K+ depends on extracellular Ca2+, is associated with 45Ca influx, is inhibited by Ca2+ entry blockers, and occurs after depolarization of the membrane to -45 to -33 mV. Maximal contractile responses to K+ and norepinephrine (NE) were similar. At low concentrations (3 X 10(-8)-10(-6) M) NE and the alpha 1-agonist methoxamine induced concentration-dependent depolarization and contraction. Above 10(-6) M contraction occurred in the absence of further changes in Em. Membrane resistance, estimated from measurements of space constant, decreased over the entire concentration-contraction curve of alpha agonists. Blockade of potassium channels by tetraethylammonium unmasked depolarization at high NE concentrations. It is concluded that in the RMPA alpha 1-adrenoceptor stimulation is associated with changes in electrical membrane properties and may in this way trigger contraction.  相似文献   

8.
The effects of a decrease in the extracellular pH from 7.4 to 6.9 on the membrane potential (MP) of intact non-stimulated guinea pig aortic endothelial cells and their ATP-induced electrical responses were studied using a whole-cell mode of the patch-clamp technique. Superfusion of the strip with CO2-−HCO 3 -buffered acidic solution evoked endothelial depolarization of 6.1±1.0 mV. In Ca2+-free medium, after the MP had been stabilized at a depolarized value, there was no shift in the MP due to extracellular acidification to pH 6.9. In the case of using tris-buffered solution, the same drop in the extracellular pH in Ca2+-containing medium induced no change in the endothelial MP. Subsequent superfusion with CO2−HCO 3 -buffered solution with pH 6.9 evoked endothelial depolarization of 7.3±1.5 mV. Changing from tris-buffered to CO2−HCO 3 -buffered solution at a constant buffer pH 7.4 also induced endothelial depolarization, suggesting that intracellular pH is a possible factor that modulates leak Ca entry. The duration of ATP-induced endothelial hyperpolarization at pH 6.9 significantly dropped (76±5 sec, on average) compared with that at pH 7.4 (121±14 sec). It is concluded that modulatory effect of acidosis on the MP of endothelial cells and their ATP-induced electrical responses are caused by inhibition of leak and ATP-stimulated calcium entry into these cells.  相似文献   

9.
Mesangial cells are smooth muscle-like cells of the renal glomerulus which contract and produce prostaglandins in response to vasopressin and angiotensin. These responses serve to regulate the glomerular capillary filtering surface area. We have used the membrane potential-sensitive fluorescent dye bis-oxonol and the intracellular fluorescent calcium-sensitive probe Indo-1 to study the changes in membrane potential (Em) and intracellular free calcium concentration ([Ca2+]i) in cultured rat mesangial cells in response to vasoconstrictor hormones. Basal [Ca2+]i was 227 +/- 4 nM, and stimulation by maximal concentrations of either vasopressin or angiotensin resulted in a transient 4-6-fold rise. Resting membrane potential was 45.8 +/- 0.9 mV and vasoconstrictor hormones caused a depolarization of 14-18 mV. The following extracellular ion substitutions indicated that chloride efflux was the predominant ion flux responsible for depolarization: 1) depolarization persisted when sodium in the medium was substituted with N-methylglucamine; 2) substitution of medium sodium chloride with sodium gluconate, which enhances the gradient for chloride efflux, augmented vasoconstrictor-stimulated depolarization; 3) suspension of cells in potassium chloride medium resulted in depolarization, following which, stimulation by either vasopressin or angiotensin resulted in hyperpolarization; and 4) this hyperpolarization did not occur when potassium gluconate medium was used to depolarize the cells. The calcium ionophore ionomycin also resulted in membrane depolarization. However, prevention of the rise in [Ca2+]i by prior exposure to ionomycin in calcium-free medium or by loading mesangial cells with the intracellular calcium buffer BAPTA did not abrogate the depolarization response to vasoconstrictor hormones. This indicates that a rise in intracellular calcium is not necessary for depolarization. In contrast, prior depolarization of the cells using varying concentrations of KCl in the external medium, which dissipated the electrochemical gradient for chloride efflux, resulted in a corresponding prolongation of the transient calcium response to vasopressin and angiotensin. These findings indicate that angiotensin and vasopressin depolarize mesangial cells by activating chloride channels and that this activation can occur by both calcium-dependent and -independent mechanisms. In addition, activation of chloride channels with resulting depolarization may serve to modulate the calcium signal.  相似文献   

10.
Extracellular and intracellular recordings were made in vitro from single neurons of the myenteric plexus of the guinea-pig small intestine. Synthetic substance P was applied to the neurons by means of the perfusing solution or by electrophoresis from micropipettes. Extracellular recording showed that substance P (100 pm-30 nm), applied by perfusion, increased the firing rate of myenteric neurons. Intracellular recording indicated that perfusion with substance P caused a dose-dependent membrane depolarization which was unaffected by hexamethonium, hyoscine, naloxone or baclofen. The depolarization was also evoked by electrophoretic application of substance P. It was associated with an increase in membrane resistance, augmented by membrane depolarization and reduced by membrane hyperpolarization. The relation between the substance P reversal potential and the logarithm of the extracellular potassium concentration was linear with a slope of 54 mV/log10[K+], which indicates that substance P inactivates the resting potassium conductance of the myenteric neurons. This effect on ion conductance is the same as that of an unknown substance that mediates slow synaptic excitations with the myenteric plexus.  相似文献   

11.
When the human neuroblastoma cell line SH-SY5Y is exposed to 12-o-tetradecanoyl-phorbol-13-acetate (TPA) the cells grow long processes indicative of neural differentiation. Concomitantly there is an increase in the resting membrane potential from ?44 ± 2 mV found in untreated cells to ?63 ± 4 mV after induction. The TPA treated cells are depolarized when the external potassium concentration is increased to 46 mM and upon addition of veratridine. In contrast to the untreated cells depolarization in differentiated cells leads to an increase in the rate of Ca2+ influx. This increase in Ca2+ influx is blocked by the Ca2+ channel antagonist, verapamil, while the Na+ channel blocker tetrodotoxin only marginally inhibits the K+ depolarization-induced Ca2+ influx.The results suggest that the induction of morphological differentiation in this cell line is associated with the appearance of features of excitable cells.  相似文献   

12.
Non-transferrin-bound iron is efficiently cleared from serum by the liver and may be primarily responsible for the hepatic damage seen in iron-overload states. We tested the hypothesis that transport of ionic iron is driven by the negative electrical potential difference across the liver cell membrane. Extraction of 55Fe-labeled ferrous iron (1 microM) from Krebs bicarbonate buffer by the perfused rat liver was continuously monitored as the transmembrane potential difference (measured using conventional microelectrodes) was altered over the physiologic range by isosmotic ion substitution. Resting membrane potential in Krebs bicarbonate buffer was -28 +/- 1 mV. Perfusion with 1 microM ferrous iron caused a reversible 3 +/- 1 mV depolarization, and higher concentrations of iron caused even greater depolarization. Conversely, depolarization of the liver cells consistently reduced iron extraction. Replacement of sodium with potassium (70 mM) or choline (131 mM) depolarized the hepatocytes to -15 and -20 mV and decreased iron extraction by 28 and 31%, respectively. Perfusion with bicarbonate-free solutions containing tricine buffer (10 mM) reduced the membrane potential to -23 mV and reduced iron extraction by 18%. In contrast, the high basal extraction of iron (91.1 +/- 1.4%) was not further increased by substitution of nitrate for chloride (-46 mV) or infusion of glucagon (-34 mV). All effects were reversible, suggesting that perfusion with 1 microM iron produced little toxicity. These findings are consistent with an electrogenic transport mechanism for uptake of non-transferrin-bound iron that is driven by the transmembrane potential difference.  相似文献   

13.
Membrane potential was measured in perfused rat liver and was shown to increase from ?33 ± 1.0 mV in livers from normal rats to ?50 ± 1.1 mV in livers from rats 12 hr after partial hepatectomy. The hyperpolarization of the membrane in regenerating liver was no longer evident after perfusion with 1 mM ouabain for 5 min. Ouabain had a small (4 mV) depolarizing effect on membrane potential in normal liver. The potential measured in normal and regenerating liver decreased as a function of the external potassium concentration above 5 mM; however, the potential was more electronegative in regenerating liver compared to normal liver at all values of external potassium concentration, and the differences in potential between the two kinds of cells did not decrease at higher concentrations of external potassium. Thus, a plot of membrane potential vs external potassium concentration resulted in approximately parallel curves for the two different cell types. We conclude that hyperpolarization of the liver cell membrane is an early event during rat liver regeneration and results from an electrogenic Na-K pump.  相似文献   

14.
中华大蟾蜍卵母细胞质膜的外向整流型钾离子通道   总被引:3,自引:3,他引:0  
姚永  朱辉 《生理学报》1992,44(5):461-469
我们用电压箝方法研究了中华大蟾蜍卵母细胞的膜生理特性。发现卵母细胞膜去极化至-30mV及更偏正时,有一持续的外向电流出现,该电流与去极化程度约呈正比增加,当膜电位箝在20mV时其峰值达3.7±1.4μA。该电流被钾离子通道拮抗剂TEA和4-AP抑制,TEA半抑制浓度为2.6mmol/L。氯通道拮抗剂9-AC(2.5mmol/L)无抑制作用。无钙的或钙离子浓度增加三倍的胞外灌流液均对该电流无影响、该外向电流的逆转电位随胞外钾离子浓度的改变而变化。胞外钾离子浓度增加十倍,逆转电位约增加47.3mV,而胞外钠、钙或氯离子浓度的改变对逆转电位基本上无影响,因此该电流可被认为主要是电压依赖性钾离子流。取自冬眠蟾蜍的卵母细胞经孕酮诱发成熟后,电压依赖性钾离子流减小,仅为原来的1/20-1/30,而取自全年在高温饲养的蟾蜍的卵母细胞经孕酮处理后未见成熟,其电压依赖性钾离子流仅减小至原来的三分之一。  相似文献   

15.
The membrane potential of guinea pig polymorphonuclear leukocytes has been assessed with two indirect probes, tetraphenylphosphonium (TPP+) and 3,3′-dipropylthiadicarbocyanine (diS-C3-(5)). The change in TPP+ concentration in the medium was measured with a TPP+-selective electrode. By monitoring differences in accumulation of TPP+ in media containing low and high potassium concentrations, a resting potential of −58.3 mV was calculated. This potential is composed of a diffusion potential due to the gradient of potassium, established by the Na+, K+ pump, and an electrogenic potential. The chemotactic peptide fMet-Leu-Phe elicits a rapid efflux of accumulated TPP+ (indicative of depolarization) followed by its reaccumulation (indicative of repolarization). In contrast, stimulation with concanavalin A results in a rapid and sustained depolarization without a subsequent repolarization. The results obtained with TPP+ and diS-C3-(5) were comparable. Such changes in membrane potential were observed in the absence of extracellular sodium, indicating that an inward movement of sodium is not responsible for the depolarization. Increasing potassium levels, which lead to membrane depolarization, had no effect on the oxidative metabolism in nonstimulated or in fMet-Leu-Phe-stimulated cells. Therefore, it seems unlikely that membrane depolarization per se is the immediate stimulus for the respiratory burst.  相似文献   

16.
The electrical properties of the egg of the medaka, Oryzias latipes, were studied before, during, and after fertilization. The resting potential of the unfertilized egg averaged ?39 ± 9 mV in Yamamoto's Ringers (Y. Ringers), but 20% of the values were between ?50 and ?60 mV. Fertilization triggers a small depolarization of 4 ± 3 mV in 10% Y. Ringers with an average duration of 20 ± 10 sec. The amplitude of this depolarization is independent of [Na+]o, [Ca2+]o, and [Cl?]o, so it appears to be due to a nonspecific leak triggered by sperm-egg fusion. The depolarization is followed by a longer hyperpolarizing phase with an average amplitude of 31 ± 12 mV. Recovery from this hyperpolarization has a fast phase lasting 155 ± 18 sec, followed by a slower phase which reaches a steady average membrane potential of ?19 ± 1 mV by 9 min after fertilization. The membrane resistance falls 10-fold during the first 2 min after fertilization, from 40 (1520 kΩ-cm2) to 3 MΩ. This is largely due to an increase in the K+ conductance. At the peak of the hyperpolarization, the membrane potential exhibits a 28 mV/decade [K+]o dependence and a 6 mV/decade [Na+]o dependence. The membrane resistance slowly recovers over the next 8 min to a value about 30% larger than before fertilization. The relation of current vs voltage was linear before, during, and after fertilization and indicated a reversal potential of ?98 ± 20 mV for the hyperpolarization peak. The egg's capacitance averaged 0.04 ± 0.01 μF (0.9 μF/cm2) before fertilization and approximately doubles within 90 sec after fertilization. It then decreases over a 9-min period, reaching a value 25% smaller than before fertilization.  相似文献   

17.
Skeletal muscle explants from normal subjects were established from biopsy material on collagen. Cellular outgrowth appeared within 3-4 days, and fusion of myoblasts was observed in 5-10 days. Multinucleated myotubes were impaled under high optical magnification, at 37 degrees C, with conventional glass microelectrodes. The mean resting potential was -44.4 mV +/- 2.4 (n = 399); -33 +/- 2.3 mV at 9 days (n = 10) vs -48 +/- 2.5 mV (n = 15) at 27 days. The average input resistance (Rin) was 9.7 M omega (n = 83). Action potentials could be elicited by electrical stimulation and had a mean amplitude of 55.9 +/- 2.1 mV with a mean maximum rate of rise (Vmax) of 72.1 +/- 7.5 V/s. The mean overshoot was 13.9 +/- 2.3 mV, and the action potential duration determined at 50% of repolarization (APD50) was 8.0 msec (n = 7). The resting membrane potential showed a depolarization of 23 mV/decade for extracellular potassium ion concentration ([K]o) between 4.5-100 mM. Thus, we have established the normal resting potential and maximum rate of rise of the action potential for human myotubes in culture. We have shown that the values for these are less than those previously reported in cultured avian and rodent cells. In addition, we have shown that the response in our system of the resting potential to change in extracellular potassium concentration is blunted compared to studies using isolated muscle, suggesting an increase in ratio of sodium to potassium permeability. Cultured human muscle cells depolarized in the presence of ouabain.  相似文献   

18.
The mechanism of caffeine-induced endothelial-dependent relaxation of vascular smooth muscle cells has been studied by recording caffeine application-induced electrical responses from intact guinea pig aortic endothelial cells. Depending on the values of the membrane potential, caffeine evoked either hyperpolarizing responses (V m<−45 mV, 88.9% of the cells tested), or depolarizing reactions (V m>−45 mV). The mean amplitude of caffeine-induced hyperpolarization of endothelial cells was 11.2±5.5 mV, which is comparable with the amplitude of ATP-induced hyperpolarization. The amplitude of caffeine-induced depolarization was 8.9±3.4 mV, on average. It was shown that caffeine-induced hyperpolarization of endothelial cells is a result of calcium release from the intracellular stores with subsequent activation of calcium-dependent potassium channels. Intracellular calcium stores involved in caffeine-induced responses are different from those involved in ATP responses. It is concluded that calcium mobilization from the intracellular stores of endothelial cells and, possibly, activation of calcium entry contributes to the caffeine-induced endothelial-dependent relaxation of vascular smooth muscle cells.  相似文献   

19.
Membrane potential of the unfertilized sea urchin egg   总被引:5,自引:0,他引:5  
The membrane potential, specific resistance, and potassium selectivity of the unfertilized Strongylocentrotus purpuratus egg were determined by two independent methods: tracer flux and microelectrode. The potassium influx was 0.50 ± 0.2 pmole/cm2· sec, which was greater than the sodium, chloride, and calcium influxes by factors of 4, 7, and 75, respectively. By means of the constant-field equations, the flux data were used to calculate membrane potential (?70 mV) and specific resistance (420 kΩ · cm2). The effect of the external potassium concentration on the sodium influx was determined and the results closely fit the result expected if the membrane behaved as a potassium electrode. Microelectrode measurements of the potential and resistance were ?75 ± 3 mV and 380 ± kΩ · cm2.  相似文献   

20.
Some electrophysiological and permeability properties of the mouse egg   总被引:3,自引:0,他引:3  
Certain electrophysiological and ionic properties of the mouse egg (CF-1 and BDF 12–18 hr post ovulation) have been investigated. Membrane potential (?14 ± 0.4 mV, ± SE, inside negative), membrane resistance (2610 ± 38 ohm·cm2), and membrane capacitance (1.6 ± 0.03 μF cm?2) have been determined by means of intracellular microelectrode recording techniques. Membrane potential and related parameters are stable for extended periods of time upon impalement and the magnitude of the cell membrane potential has been demonstrated to be sensitive to alteration in external sodium. The electrophysiological studies in conjunction with measurements of unidirectional potassium fluxes using isotope tracer-techniques have allowed determination of membrane permeability to potassium (8 × 10?8 cm sec?1) and membrane potassium conductance (25 μmho cm?2). Furthermore, the use of tracer flux techniques has indicated that the exchangeable fraction of intracellular potassium is 204 ± 14 mM. This represents the bulk of egg potassium (222 ± 19 mM as determined from flame photometry). Studies of unidirectional potassium efflux have indicated that its movement out of the egg is made up of at least two components; an external potassium-independent potassium efflux and external potassium-dependent efflux, the latter possibly representing a potassium exchange mechanism. The combined electrophysiological and tracer-flux data indicate that only a small portion of the total membrane conductance is composed of potassium conductance at this stage of development. This and the fact that the membrane potential is far from the potassium equilibrium potential are similar to observations made on mature eggs of several other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号