首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increase in dATP pool in aphidicolin-resistant mutants of mouse FM3A cells   总被引:2,自引:0,他引:2  
Mutants that were resistant to aphidicolin were isolated from mutagenized mouse FM3A cells at a frequency of about 10?6. Resistance to aphidicolin in these mutants was not due to an effect on [3H]thymidine incorporation into DNA, DNA synthesis in permeabilized cells, or DNA polymerase α.All the mutants showed a greatly increased dATP pool and decreased ability to incorporate [3H]deoxycytidine into DNA. They also showed cross-resistance to both 1-β-D-arabinofuranosyladenine and 1-β-D-arabinofuranosylcytosine.These results indicate that an enzyme involved in production of dATP or its regulation is altered in these mutants. It is suggested that dATP competes with aphidocolin at its killing site or that dATP reverses the effect of aphidicolin by some unknown mechanism invivo.  相似文献   

2.
In view of the possible utilization of aphidicolin, a specific inhibitor of DNA polymerase α, in the treatment of neoplastic diseases, it seemed important to assess the mutagenic effect of the drug and the possible modification induced by metabolic activation in the liver. This paper shows that aphidicolin lacks mutagenicity in the Ames' Salmonella-microsome test in agreement with our previous observation that it does not induce DNA repair synthesis in HeLa cells. During the studies of mutagenicity we have observed that aphidicolin is converted to inactive derivative(s) by rat liver microsomal oxidases. The reaction is dependent on time and temperature and requires NADP+ and glucose-6-P. The metabolites are not mutagenic and they do not induce DNA repair synthesis in HeLa cells. Therefore the possible anti-cancer use of aphidicolin is not hampered by its partial metabolic inactivation in liver. Our results suggest however that aphidicolin will possibly be clinically useful at concentrations higher than those expected from our studies with human DNA polymerase α in vitro and human neoplastic cell lines in vivo. The metabolic derivative(s) of aphidicolin is inactive both against cellular DNA polymerase α and Herpes simplex viral DNA polymerase.  相似文献   

3.
It has previously been shown that the 5′-terminal deoxyadenosine residue of each φ29 DNA strand is linked covalently to the 30,000 dalton terminal protein. When extracts prepared from φ29-infectedBacillussubtilis cells are incubated with [α-32p]dATP, complexes consisting of the nucleotide covalently linked to a 30,000 dalton protein can be detected. The formation of this complex requires the presence of φ29 DNA containing the bound 30,000 dalton terminal protein and Mg++. When uninfected cell extracts were used, there was no complex formation. When [α-32p]dCTP was used in place of [α-32p]dATP, no complex was formed. DNA-protein templates prepared from φ29 related phages, φ15, Nf, M2Y and GA-1, also supported the complex formation in various degrees. These results support the hypothesis that the terminal protein serves as a primer for the initiation of φ29 DNA replication.  相似文献   

4.
Mutant cells lines of 3T6 mouse fibroblasts, resistant to thymidine and deoxyadenosine, have an altered allosteric regulation of the enzyme ribonucleotide reductase (Meuth, M. and Green, H., Cell, 3, 367, 1974). Compared to 3T6, these lines contain larger pools of deoxynucleoside triphosphates, in particular deoxycytidine triphosphate, but show a normal rate of DNA synthesis. Addition of thymidine or deoxyadenosine to 3T6 cells results in large accumulations of the corresponding triphosphates and a dramatic decrease in the dCTP pool, concomitant with inhibition of DNA synthesis. Addition of thymidine to the mutant cell lines also leads to an increase in the dTTP pool but does not result in a depletion of dCTP or inhibition of DNA synthesis. Addition of deoxyadenosine only leads to a small increase of the dATP pool. In general the change in the allosteric regulation of bibonucleotide reductase is reflected in the deoxynucleotide pools.  相似文献   

5.
A nick-translation reaction with E. coli DNA polymerase I (pol. I) was used to detect in situ DNA breaks produced by chemical carcinogens. Normal human fibroblasts treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in various doses were permeabilized with lysolecithin, and were nick translated in the presence of [3H]dCTP and pol. I. The radioactivity incorporated increased with MNNG concentration, and was directly proportional to the poly(ADP-ribose) synthetase activity. Other DNA-damaging agents such as bleomycin or 4-nitroquinoline 1-oxide also caused the nick translation rate to increase. When MNNG-treated cells were cultured in fresh medium containing no MNNG, the increase in the rate of nick translation in permeable cells became less and this decrease was abolished by addition of aphidicolin or cytosine arabinoside. The nick translation method described here may be a useful means for estimating intrinsic DNA breaks in cells treated with carcinogens.  相似文献   

6.
The mode of action of aphidicolin on DNA synthesis catalysed by the DNA polymerase of Methanococcus vannielii is competitive for dCTP, noncompetitive for dATP, dGTP and dTTP and uncompetitive for activated DNA. The kinetic data are accounted for by a mechanism in which dCTP and aphidicolin compete for the dCTP-specific binding site on the DNA polymerase. The dissociation constant for the aphidicolin--DNA-polymerase complex is 0.04-0.07 microM. Similar modes of inhibition of DNA synthesis exist for DNA polymerase alpha of higher eucaryotes but not for eubacteria or viruses and suggests a close functional relationship between the DNA polymerase of eucaryotes and of the archaebacterium M. vannielii.  相似文献   

7.
The effect of depurination of polynucleotide templates on the fidelity of DNA synthesis in vitro has been determined. The fidelity of DNA synthesis with Escherichia coli DNA polymerase I, avian myeloblastosis virus DNA polymerase and human placenta DNA polymerase-β is decreased as a result of depurination of the poly[d(A-T)], poly[d(G-C)]and poly[d(A)]templates. The error rate with poly[d(A-T)]increased from 117,500 to 12100 using E. coli Pol I, and from 14100 to 11500 using the myeloblastosis virus DNA polymerase. Depurination of poly[d(A)]increased the error rate from 121,000 to 16500 using E. coli Pol I, and from 119,300 to 16100 using the DNA polymerase-β from human placenta. Depurination of poly[d(G-C)]resulted in an increase in the error rate with E. coli Pol I from 19200 to 12200, and with the virus DNA polymerase from 12400 to 11300. This misincorporation is shown to be directly proportional to the extent of depurination. Deletion experiments and alkaline sucrose gradient analyses suggest that the incorporation of complementary and non-complementary nucleotides is dependent on polymerization, and occurs in the same newly synthesized product. Kinetic studies and nearest-neighbor analyses indicate that the incorporation of non-complementary nucleotides occurs randomly as single-base substitutions. The nearest-neighbor studies also suggest that any of the four deoxynucleotides can be incorporated opposite apurinic sites. The number of each nucleotide incorporated relative to the number of apurinic sites was determined to be 1490 for dGTP, 1115 for dCTP, 12·5 for dATP and 11·7 for dTTP with both the poly[d(A-T)] and poly[d(A)] templates. The frequencies of misincorporation relative to the number of apurinic sites with the poly[d(G-C)]template were 1230 for dATP, 1120 for dTTP, 12·4 for dGTP and 11·8 for dCTP. Hydrolysis at the apurinic sites by alkali treatment reversed the effects of depurination on fidelity. The error rates with the depurinated templates were reduced to within 2% of those obtained prior to depurination, providing additional evidence that the misincorporation after depurination results from apurinic sites on the template. These results suggest a possible relationship between depurination of DNA and errors in DNA replication and/or repair.  相似文献   

8.
Deoxynucleoside triphosphate concentrations in Chinese hamster ovary cell lines, CHO-K1 and Mut 8–16, were examined following exposure of cells to UV or dimethylsulfate. Marked decreases in dCTP were observed 2 hr after exposure to both mutagens. In contrast, dTTP concentrations increased with increased cell killing after exposure to UV but not after exposure to dimethylsulfate. Examination of DNA synthesis in permeabilized cells in the presence of excess concentrations of dNTP substrates suggests that excess dCTP enhances replication while excess of dTTP inhibits replication. We therefore ask whether the increase in the dTTPdCTP ration in mutagenized whole cells either contributes to or prolongs induced inhibition of replication. In addition we proposed that such an induced dNTP imbalance may also contribute to an increase in mutations by enhancing the probability for base-misincorporation.  相似文献   

9.
Effect of aphidicolin on viral and human DNA polymerases.   总被引:9,自引:0,他引:9  
DNA polymerases induced by Herpes simplex and Vaccinia viruses are inhibited by aphidicolin and this inhibition is probably the basis of its antiviral activity in vivo. Its possible clinical use is however hampered by the concomitant effect on human replicative DNA polymerase α. The inhibition of human α-polymerase is reversible both invitro and in vivo and the changes in the rate of incorporation of thymidine into DNA, following treatment with aphidicolin for a generation time, indicate the likely synchronization of the cells due to this agent. DNA polymerase β, which has recently been shown to carry out repair synthesis of damaged nuclear DNA, is not inhibited by aphidicolin either in vitro on in vivo suggesting that the drug could allow a rapid and simple evaluation of DNA repair synthesis due to DNA polymerase β.  相似文献   

10.
The effects of various concentrations of thymidine on DNA synthesis and deoxyribonucleoside triphosphate contents of a highly thymidine-sensitive cultured mouse lymphoma cell line (WEHI-7) and a relatively resistant mouse myeloma cell line (HPC-108) have been studied by 32P-labelling techniques. DNA synthesis in the myeloma cells was inhibited by thymidine at concentrations of 10(-3) M or greater, while DNA synthesis in the lymphoma cells was inhibited by concentrations 30-fold lower, consistent with the 25-fold difference between the two cell lines in sensitivity to growth inhibition by thymidine. Thymidine caused marked elevation of the dTTP and dGTP pools, slight elevation or no change in the dATP pool and a marked decrease in the dCTP pool in cells of both lines. The greater resistance of HPC-108 cells to thymidine inhibition was related to the finding that they normally contained a much higher concentration of dCTP than did the WEHI-7 cells. Pool size measurements on thymidine-treated (10(-4) M) cells of an additional seven sensitive lymphoma and six relatively resistant myeloma cell lines indicated that in all 15 lines studied, with one exception, a critical concentration of dCTP of about 32 nmol per ml of cell volume was required for the maintenance of normal rates of DNA synthesis. The dCTP content found normally in the lymphoma cells was only a little above this concentration. Amongst the myeloma lines, three contained similarly low levels of dCTP, but were more resistant to thymidine inhibition probably because of their inefficient production of dTTP from thymidine. Cells of the other four myeloma lines (including HPC-108) normally contained much higher dCTP concentrations. The mechanism of thymidine action was explained by reference to the known allosteric properties of ribonucleotide reductase.  相似文献   

11.
DNA polymerases involved in bleomycin-induced unscheduled DNA synthesis in some permeable human cells and rodent cells were studied by using selective inhibitors (aphidicolin, 2′,3′-dideoxythymidine-5′-triphosphate and N-ethylmaleimide) for DNA polymerases. The results suggest that both DNA polymerases α and β are involved in bleomycin-induced unscheduled DNA synthesis in permeable HeLa-S3 cells and probably in some other permeable human cells (HEp-2, KB and WI-38 VA-13 cells). Bleomycin-induced unscheduled DNA synthesis in some permeable rodent cells (SR-C3HHe, Balbc 3T3, 3Y1 and XC cells) is mostly attributed to DNA polymerase β.  相似文献   

12.
Growth rates of two lines of tobacco (Nicotianatabacum) cell suspension cultures were measured in the presence or absence of G418, a new 2-deoxystreptamine antibiotic related to Gentamycin. Cell growth rates of N. tabacum cv. Burley were inhibited at drug concentrations as low as 1.65 × 10?7 M. At 4 × 10?7 M, the doubling time was increased from 1.5 days (control) to 2.3 days (treatment). The drug was lethal to cells at 4 × 10?6 M, and inhibition was irreversible. Cells of N. tabacum cv. Wisconsin 38 also were inhibited by the drug, although at slightly higher concentrations (ca. 2–5 fold).In view of our findings, G418 and its associated resistance factors could be of great value in plant genetic engineering.  相似文献   

13.
On a variety of single-stranded DNA templates, the overall rate of in vitro DNA synthesis catalyzed by the bacteriophage T4 DNA polymerase is increased about fourfold by addition of the T4 gene 4462 and 45 proteins. Several different methods suggest that this stimulation reflects an increase in the average DNA polymerase “sticking distance”, or processivity, from 800 to about 3000 nucleotides per initiation event. Both the 4462 protein complex and the 45 protein must be present to obtain this effect, and either ATP or dATP hydrolysis is required. Rapid-mixing experiments indicate that the polymerase stimulation is maximized within a few seconds after addition of these “polymerase accessory proteins.”  相似文献   

14.
15.
A new type of kasugamycin-resistant mutant has been isolated from E. coli K12, strain AB312 (Hfr, lac,thr,leu,thi,strA,fus). In a cell-free protein-synthetic system, the resistance is localized in the ribosome but not in the supernatant fraction. On initiation complex formation, the resistance is associated with the washed ribosome but not with initiation factors. In reconstitution of the 30S ribosomal subunit, the resistance is due to the protein(s) but not to 16S RNA. In two-dimensional electrophoresis, protein S2 is deficient in the 30S ribosomal subunit of kasugamycin-resistant mutant. The results indicate that the kasugamycin-resistance is attributed to alteration of ribosomal protein S2.  相似文献   

16.
H Krokan  E Wist    R H Krokan 《Nucleic acids research》1981,9(18):4709-4719
Aphidicolin is a selective inhibitor of DNA polymerase alpha. In contrast to earlier reports, the drug was found to inhibit DNA synthesis catalyzed by DNA polymerase alpha and isolated HeLa cell nuclei by a similar mechanism. For both systems aphidicolin primarily competed with dCTP incorporation. However, the apparent Vmax for dCTP incorporation was reduced by 50-60% at relatively low concentrations of aphidicolin, thus the mechanism of inhibition is complex. Furthermore, a 2-5 fold increase in apparent Km for dTTP was observed in the presence of aphidicolin, but the apparent Km values for dATP and dGTP were essentially unaltered. This, together with additional evidence, suggested that the mechanism of action of aphidicolin involves a strong competition with dCMP incorporation, a weaker competition with dTMP incorporation and very little, if any, competition with dGMP and dAMP incorporation.  相似文献   

17.
The action of acetazolamine on sodium transport in Rana esculenta skin was studied with the external face bathed in dilute (2mMM) or concentrated (Ringer) solutions of sodium chloride.The absorption of Na+ from a dilute solution is inhibited at an acetazolamide concentration of 10−5M. This is due to an inhibition of the influx: the efflux remains unchanged. Acetazolamide has no effect, however, on transport from Ringer solution.The graphic determination of the Na+ transport pool at the 2 mM NaCl concentration showed that acetazolamide diminished the pool without affecting the t12. The inhibitor had no effect on the pool at the higher (Ringer) concentration.These results indicate that acetazolamide acts on the external barrier of the sodium transport compartment without affecting the active pump of this ion when it is being transported from a dilute sodium chloride solution.  相似文献   

18.
The inhibition in vitro of herpes simplex virus 1 and vaccinia virus DNA polymerases by aphidicolin is primarily noncompetitive with dGTP, dATP, dTTP, DNA, and Mg2+ and competitive with dCTP in analogy with the mode of inhibition of cellular alpha-polymerase. The degree of inhibition of viral or cellular growth in vivo can be quantitatively predicted by the degree of inhibition of the isolated replicative DNA polymerases at the same concentration of aphidicolin in suitable conditions (limiting dCTP concentration). Thus, the only in vivo target for aphidicolin is probably the replicative DNA polymerase, and aphidicolin is a highly specific inhibitor of replicative nuclear DNA synthesis in eucaryotes. This, coupled with the lack of mutagenic effect, represents a valuable property for an anticancer drug. The specificity of inhibition (contrary to the aspecific effect on almost all DNA polymerases by a true competitive inhibitor, such as 1-beta-D-arabinofuranosylcytidine 5'-triphosphate) and the structure of the drug, which does not resemble that of the triphosphates, suggest that aphidicolin must recognize a site common only to the replicative DNA polymerases of eucaryotes and different from the binding site for deoxyribonucleic triphosphates and DNA, which should be similar in reparative and procaryote-type DNA polymerase; the aphidicolin binding site is probably very near to, or even overlaping with, the binding site for dCTP so that the drug mimics a competitive effect with this nucleotide.  相似文献   

19.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder associated with multiple mutations in mitochondrial DNA, both deletions and point mutations, and mutations in the nuclear gene for thymidine phosphorylase. Spinazzola et al. (Spinazzola, A., Marti, R., Nishino, I., Andreu, A., Naini, A., Tadesse, S., Pela, I., Zammarchi, E., Donati, M., Oliver, J., and Hirano, M. (2001) J. Biol. Chem. 277, 4128-4133) showed that MNGIE patients have elevated circulating thymidine levels and they hypothesized that this generates imbalanced mitochondrial deoxyribonucleoside triphosphate (dNTP) pools, which in turn are responsible for mitochondrial (mt) DNA mutagenesis. We tested this hypothesis by culturing HeLa cells in medium supplemented with 50 microM thymidine. After 8-month growth, mtDNA in the thymidine-treated culture, but not the control, showed multiple deletions, as detected both by Southern blotting and by long extension polymerase chain reaction. After 4-h growth in thymidine-supplemented medium, we found the mitochondrial dTTP and dGTP pools to expand significantly, the dCTP pool to drop significantly, and the dATP pool to drop slightly. In whole-cell extracts, dTTP and dGTP pools also expanded, but somewhat less than in mitochondria. The dCTP pool shrank by about 50%, and the dATP pool was essentially unchanged. These results are discussed in terms of the recent report by Nishigaki et al. (Nishigaki, Y., Marti, R., Copeland, W. C., and Hirano, M. (2003) J. Clin. Invest. 111, 1913-1921) that most mitochondrial point mutations in MNGIE patients involve T --> C transitions in sequences containing two As to the 5' side of a T residue. Our finding of dTTP and dGTP elevations and dATP depletion in mitochondrial dNTP pools are consistent with a mutagenic mechanism involving T-G mispairing followed by a next-nucleotide effect involving T insertion opposite A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号