首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competition for luteinizing hormone-releasing hormone (LH-RH) receptor sites by the inhibitory analog [D-Phe2, D-Trp3, D-Phe6]-LH-RH and by the superactive stimulatory analog [D-Trp6]-LH-RH was observed in adenohypophysial homogenates incubated at 4°C. Competition for LH-RH binding sites was less evident with adenohypophysial plasma membranes. The binding affinities of these analogues to LH-RH pituitary receptors can explain at least in part their respective action in blocking ovulation and in inducing a greater release of luteinizing hormone and follicle stimulating hormone than the parent hormone.  相似文献   

2.
Luteinizing hormone-releasing hormone (LH-RH) is degraded in vitro by serum and plasma from several species (human, rat, guinea-pig and cattle). Separation of the degradation products by high-performance liquid chromatography (HPLC) followed by amino acid analysis and radioimmunoassay showed that the main sites of cleavage are the Trp3-Ser4 and Tyr5-Gly6 bonds. Two peptidases are responsible since the cleavage at Trp3-Ser4 can be selectively inhibited by EDTA. In human plasma, the peptidase responsible for Trp3-Ser4 hydrolyssishas a Km of 2.9 · 10?4 M and V of 30 nmol/h per ml plasma. The half-life in vitro of LH-RH in serum and plasma from various species ranges from 3 h (guinea-pig) to 9.8 h (human). The peptidase cleaving LH-RH at Tyr5-Gly6 is present as an impurity in some commercial bovine serum and plasma albumins. Such contamination may have important practical implications for work involving peptide assays where albumins are used as carrier proteins.  相似文献   

3.
A new method is described for the measurement of hormone bound to membrane receptors. Antibodies specific for the C-terminal and N-terminal regions of parathyroid hormone were labelled with 125I and incubated with renal membranes which had been previously incubated with unlabelled hormone. The uptake of hormone demonstrated pH and time dependence and was a saturable process. Treatment of the membranes with acid or heating to 100°C, or inactivation of the hormone with hydrogen peroxide, completely abolished detectable hormone uptake to the membranes.  相似文献   

4.
The synthetic decapeptide “luteinizing hormone-releasing hormone” (LH-RH) was rendered antigenic by reaction of its histidine or tyrosine residues (7 : 3 approx.) with p-diazonium phenylacetic acid and coupling of the azo-derivatives formed to bovine serum albumin (BSA). Immunization of rabbits yielded antisera that bound 125I-labeled LH-RH (approx. 50 pg) at dilutions up to 1:200, 000 and showed no cross-reaction with unrelated hypothalamic and pituitary hormones, extracts from rat cerebral cortex, and with small fragments of LH-RH. Cross-reaction was minimal (0.2%) with the free acid analogue of LH-RH, and moderate with des-pGlu LH-RH (20%), des-pGlu-His-LH-RH (2.4%) and with LH-RH analogues in which a single residue (No. 4–6 or No. 8) was exchanged by an amino-acid of similar character (1.2–12%). Biologically active hypothalamic extract and LH-RH produced parallel 125I-LH-RH-binding inhibition curves, providing immunochemical support for the identity of the native releasing hormone with synthetic LH-RH.  相似文献   

5.
To assess whether fetal luteinizing hormone releasing hormone (LH-RH) neurosecretory neurons have the capacity to respond to an exogenous stimulus, a synthetic excitatory amino acid analogue, N-methyl-D-L-aspartate (NMDA; 15 mg/kg), was given rapidly intravenously to 8 chronically catheterized fetuses (130-142 days of gestation; term 147 +/- 3 days). All 8 fetuses exhibited a rise in plasma ovine luteinizing hormone (oLH) and ovine follicle-stimulating hormone (oFSH) within 5 min. The mean maximal increments of oLH (2.25 +/- 0.36 ng/ml) and oFSH (1.21 +/- 0.32 ng/ml) were significantly greater than in 6 normal saline-injected controls (oLH p < 0.0002; oFSH p < 0.03). The secretion of ovine prolactin (oPRL) and ovine growth hormone (oGH) was unaffected. LH-RH (5 microg) evoked a greater oLH response (p < 0.0009) and a greater oFSH response (p < 0.03) than NMDA (n = 6). Desensitization of the fetal gonadotrope by a potent LH-RH agonist, D-Trp6Pro9NEt-LH-RH (10 microg/day i.v. x 4 days), abolished the fetal oLH and the oFSH response to NMDA (n = 5). Moreover, D, L-2-amino-5-phosphonovalerate, a specific competitive antagonist for the NMDA receptor, completely inhibited the fetal oLH and oFSH response to NMDA, whereas D-L-2-amino-5-phosphonovalerate alone did not affect the plasma oLH or oFSH levels, the gonadotropin response to LH-RH, or the release of oGH or oPRL (n = 3). In primary ovine fetal pituitary cell cultures, NMDA (10(-10) to 10(-6) M) had no effect on oLH, oFSH, oGH, or oPRL secretion, whereas LH-RH stimulated oLH (10(-8) M; p < 0.0004) and oFSH (10(-8) M; p < 0. 0001) release, evidence that NMDA did not have a direct pituitary effect. The results suggest that NMDA induces oLH and oFSH secretion by stimulation of the fetal LH-RH pulse generator and is mediated by central NMDA receptors. Fetal LH and FSH secretion and the response to LH-RH decrease in late gestation in the ovine and human fetus. The relative importance of sex steroid dependent and sex steroid independent central nervous system inhibition in this developmental change is unclear. It appears that central neural inhibition in addition to sex steroid negative feedback contributes to the decrease in fetal gonadotropin concentrations in late gestation. NMDA did not affect fetal oGH or oPRL secretion.  相似文献   

6.
Synthetic LH-RH was iodinated by the modified chloramine-T or lactoperoxidase method, using 127INa or 125INa. The yields of the products, the LH releasing activities of the monoiodinated peptides as well as binding to pituitary membrane fractions were measured. The variation in yield in the four procedures used for iodination was a function of the amount of oxidizing agent. Monoiodinated products obtained by the different procedures possessed comparable LH-releasing activities as well as binding affinity to pituitary plasma membranes.  相似文献   

7.
The ability of the Luteinizing Hormone-Releasing Hormone (LH-RH) analogs to displace LH-RH from its pituitary receptors was evaluated invitro. The two superactive analogs tested showed higher potency than the antagonists and LH-RH itself, D-Trp6-LH-RH being the most potent. The LH-RH specific binding activity in the pituitary fluctuated throughout the age of the rats. The highest number of LH-RH binding sites were seen on day 35 of age (276 fmol × 10?2/pit) and an increment was induced by 0.05 μg D-Trp6-LH-RH (400 fmol × 10?2/pit). However, 1 μg D-Trp6-LH-RH reduced the binding of LH-RH at all the times studied. In the control animals the number of estradiol binding sites increased on day 42 of age, and 0.05 μg D-Trp6-LH-RH augmented them on day 35 of age. On the contrary, 1 μg D-Trp6-LH-RH diminished the estradiol uterine receptors at all the times studied. Similar results were obtained in the ovariectomized-hypophysectomized rats on day 35 of age. Our studies demonstrated a biphasic action of D-Trp6-LH-RH on LH-RH pituitary receptors and a direct effect on uterus which could be mediated through the uterine estradiol receptors.  相似文献   

8.
9.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37°C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37°C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37°C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37°C, 80% of the cell-bound radioactivity was not extractable from GH3 cells with acetic acid.  相似文献   

10.
Adenylate cyclase (ATP pyrophosphate-lyase, EC 4.6.1.1) in plasma membranes from human thyroid was highly responsive to thyrotropin. Pretreatment of thyroid plasma membranes with 5′-guanylylimidodiphosphate (Gpp(NH)p) in the presence of Mg2+ led to a temperature-dependent activation, which was seen neither in the absence of Mg2+ nor at 4 °C. By contrast, thyrotropin bound to its receptors regardless of the temperature and produced its maximal effect after 2 min of preincubation in the absence or presence of Mg2+. Furthermore, activation was seen after treatment with thyrotropin and Gpp(NH)p even carried out in the absence of Mg2+ or at 4 °C. However, the full activation by Gpp(NH)p required Mg2+, hormone, and elevated temperature. These observations suggest that there appears to be two types of nucleotide interaction responsible for the Gpp(NH)p activation in human thyroid membrane; one type seen in the absence of hormone may represent the system uncoupled from hormone receptor, while the fully coupled hormone-sensitive adenylate cyclase accounts for the second type of interaction which requires the presence of hormone.  相似文献   

11.
Synthetic luteinizing hormone-releasing hormone (LH-RH) lost both its immunore-activity and hormonal activity on incubation with hypothalamic or cerebrocortical slices or homogenates. This inactivation was shown to be due to degradation of the decapeptide by soluble enzyme(s) present in the 100,000 × g supernatant fraction of the homogenates. The supernatant derived from one rat hypothalamus was capable of destroying 1 μg of exogenous LH-RH within 5 min. The hexapeptide pGlu-His-Trp-Ser-Tyr-Gly was identified as the major radioactive breakdown product of [pGlu-3-3H] LH-RH, and tentative evidence for the formation of the tetrapeptide Leu-Arg-Pro-Gly-NH2 was obtained by sequential electrophoresis and paper chromatography. These findings suggest that the Gly-Leu bond may be the preferred site of cleavage.  相似文献   

12.
A peptide having gonadotropin-releasing activity was isolated in a yield of 2.5 μg from an extract of 2,000 chicken hypothalami. The biopotency was monitored using rat anterior pituitary cell culture system. The peptide differs from mammalian Luteinizing Hormone-Releasing Hormone (LH-RH) in its behavior during chromatographic separation (ionexchange and high performance liquid chromatography) and in its reaction towards anti-LH-RH antiserum directed against the C-terminal region of the LH-RH molecule. The peptide (chicken LH-RH) stimulates secretion of both LH and FSH from rat anterior pituitary cells. The biological potency of this peptide was about 4 % of that of the authentic decapeptide estimated in the rat anterior pituitary system. The amino acid composition is (Ser, Pro, Glx2, Gly2, Leu, Tyr, His, Trp), which differs from mammalian LH-RH only in that one Arg residue is replaced by a Glx residue. Based on the behavior on CM cellulose chromatography and the reaction towards anti-LH-RH antiserum, one possible structural candidate for this peptide (chicken LH-RH) is [Gln8]-LH-RH.  相似文献   

13.
An agonist of chicken hypothalamic luteinizing hormone-releasing hormone (cLH-RH). [D-Trp6] cLH-RH, was synthesized and tested for luteinizing hormone (LH)-releasing activity using dispersed chicken anterior pituitary cells, as well as for binding to rat anterior pituitary membrane receptors. cLH-RH and mammalian LH-RH (mLH-RH) gave identical dose-response curves in stimulating chicken LH release (ED50=1.6 and 1.8×10?9M respectively) and similar estimates of potency. The [D-Trp6] analogs of cLH-RH and mLH-RH stimulated LH release at lower doses (ED50=7.0 and ~7.0×10?11M respectively) and were approximately 20-fold more potent. In contrast to the activity in the chicken bioassay, cLH-RH bound to rat anterior pituitary membrane receptors with a much lower affinity than did mLH-RH and had a relative potency of 2%. [D-Trp6] cLH-RH was approximately 100-fold more potent than cLH-RH in the rat receptor assay while [D-Trp6] mLH-RH was 28-fold more active than mLH-RH. These data demonstrate that substitution of Gly6 of LH-RH with D-Trp enhances the LH release from chicken pituitary cells to a similar extent to that observed in mammals, and indicate that the approaches used to produce active LH-RH analogs in mammals are likely to be applicable to birds.  相似文献   

14.
The possibility that prostaglandin E2 (PGE2) may play a role in luteinizing hormone (LH) release was examined using an model. Addition of luteinizing hormone-releasing hormone (LH-RH) to the culture medium stimulated cyclic AMP accumulation and LH-release by incubated hemipituitaries, but did not affect the level of PGE2 or prostaglandin synthetase activity in the gland. Aspirin and indomethacin reduced both prostaglandin synthetase activity and PGE2 content in the pituitary, but did not impair the stimulatory action of LH-RH on either cyclic AMP accumulation or LH-release. Flufenamic acid on its own caused LH-release, but the drug abolished the effect of LH-RH on cyclic AMP accumulation. The mechanism of this action of flufenamic acid is not understood.It is concluded that the stimulatory action of LH-RH on pituitary cyclic AMP production and LH release is not mediated by prostaglandins.  相似文献   

15.
A method of preparing luteinizing hormone-releasing hormone (LH-RH) pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2, by a combination of solid-phase and classical reactions was employed to conveniently synthesize a tritium-labelled hormone by incorporation of 4-[3H]-pyroglutamic acid into position I of the peptide chain. The tritiated LH-RH possessed a specific radioactivity of 18.3 Ci/mmole and a maximal biological potency.  相似文献   

16.
In a significant proportion of patients with acromegaly, a non-specific increase in plasma growth hormone (GH) has been recognized following administration of thyrotropin-releasing hormone (TRH) or luteinizing hormone-releasing hormone (LH-RH), probably due to the lack of the specificity of the receptor in their tumor cells. In this study, the effects of corticotropin-releasing factor (CRF), a newly isolated hypothalamic hormone, in addition to TRH and LH-RH, on plasma levels of GH and the other anterior pituitary hormones were evaluated in 6 patients with acromegaly. Synthetic ovine CRF (1.0 microgram/kg), TRH (500 micrograms) or LH-RH (100 micrograms) was given as an iv bolus injection, in the morning after an overnight fast. Blood specimens were taken before and after injection at intervals up to 120 min, and plasma GH, adrenocorticotropin (ACTH), thyrotropin, prolactin, luteinizing hormone, follicle-stimulating hormone and cortisol were assayed by radioimmunoassays. A non-specific rise in plasma GH was demonstrated following injection of TRH and LH-RH, in 5 of 6 and 2 of 5 patients, respectively. In all subjects, rapid rises were observed in both plasma ACTH (34.3 +/- 6.2 pg/ml at 0 min to 79.5 +/- 9.5 pg/ml at 30 min, mean +/- SEM) and cortisol level (9.1 +/- 1.3 micrograms/dl at 0 min to 23.4 +/- 1.2 micrograms/dl at 90 min). However, plasma levels of GH and the other anterior pituitary hormones did not change significantly after CRF injection. These results indicate that CRF specifically stimulates ACTH secretion and any non-specific response of GH to CRF appears to be an infrequent phenomenon in this disorder.  相似文献   

17.
This experiment was conducted to compare the luteinizing hormone (LH), progesterone (P4) and oestradiol (E2) release in response to injections of various doses of synthetic mammalian luteinizing hormone-releasing hormone (LH-RH) and of an LH-RH agonist, ICI 118630, administered to laying hens 4 to 9 hours after a mid-sequence ovulation. Plasma LH increased significantly within 10 minutes of injection of either compound whereas any increases in plasma steroid concentrations were discerned later, at approximately minutes post-injection. No dose-response relationship was found for either compound with respect to LH release, but ICI 118630 appeared more potent than LH-RH. This analog also produced a greater mean incremental rise in plasma progesterone, but not oestradiol, than LH-RH, and this was found in animals injected at a time when the largest ovarian follicle was not mature. These result suggest that ICI 118630 is a more potent releasing hormone in the hen at the level of the pituitary, and that it may have a stimulating effect on ovarian progesterone secretion.  相似文献   

18.
Three analogues of LH-RH in which Dextrarotatory amino acids were substituted for the Gly6, and two additional analogues in which the Leu7 residue was also modified, were subjected to enzymic preparations derived from rat hypothalamus or anterior pituitary. These enzymes, known to cleave LH-RH, preferentially at the Gly6-Leu7 position, proved less effective in degrading all the analogues tested. Among the Gly6 substituted analogues, [D-Trp6] LH-RH, having the highest LH-releasing activity, was most resistant to degradation. Additional modification, at position 7, although rendering the analogues immune to enzymic attack, did not further enhance their biological potency. These data suggest that degradation of LH-RH is a physiological determinant of its biological activity and has therefore to be considered with on designing new, potent analogues of the hormone.  相似文献   

19.
R Meidan  Y Koch 《Life sciences》1981,28(17):1961-1967
The binding of luteinizing hormone-releasing hormone (LHRH) to dispersed rat pituitary cells was studied by using 125I-labeled analogues of the neurohormone: a superactive agonist [D Ser (But)6]LHRH(1–9) ethylamide and an antagonist DpGlu1, DPhe2, DTrp3,6-LHRH. Although these cells were exposed to proteolytic enzymes, their ability to respond to LHRH stimulation by gonadotropin release, is preserved. The time course of binding of the two analogues at different temperatures has demonstrated that highest specific binding is evident at 4°C and that equilibrium is reached after 90 min of incubation at this temperature. Incubation of pituitary cells with the labeled analogues together with increasing concentrations of LHRH or unlabeled analogues exhibited parallel competition curves, suggesting binding to the same receptor sites but with different affinities. Biologically inactive analogues of LHRH or unrelated peptides such as TRH did not compete for binding sites. Ka values for the agonist, LHRH and the antagonist were 2.1 × 109M?1, 0.92 × 108M?1 and 0.76 × 109M?1, respectively, and the binding capacity was 116 fmoles/106 pituitary cells.  相似文献   

20.
Third ventricular injections of vasoactive intestinal polypeptide (VIP) result in increased circulating levels of luteinizing hormone (LH) in conscious, freely moving, ovariectomized (OVX) rats. This effect of VIP has been hypothesized to be mediated via stimulation of luteinizing hormone-releasing hormone (LH-RH) secretion from hypothalamic neurons since VIP is incapable of stimulating LH release from rat pituitaries in vitro. To test this hypothesis, crude synaptosomes were prepared from OVX rat median eminence (ME) tissue. Release of LH-RH from these preparations displayed time and temperature dependencies. Additionally, depolarization-induced (elevated K+) LH-RH release was demonstrated to be Ca2+-dependent. VIP, in doses ranging from 1.5 · 10?9 M, was capable of stimulating significantly greater LH-RH release from ME synaptosomes than that from control preparations. VIP's close structural homolog, glucagon, was incapable at the same doses of stimulating increased LH-RH release. These findings offer an explanation for the effect of third ventricularly injected VIP on LH release and suggest a modulatory role for VIP in the hypothalamic control of LH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号