首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resonance Raman spectrum of β-carotene in photosystem Ⅱ (PS Ⅱ )reaction center complex was characterized by four main bands, peaking at 1532 (νl), 1156 (ν2), 1010 (ν3) and 970 (ν4) cm -1, respectively, with several additional small Raman bands in the region between 1100 cm-1 and 1500 cm-1 It was suggested that β-carotene molecules of the reaction center complex were in all-trans configuration. The resonance Raman spectrum of an acetone extract from the reaction center complex also showed four main bands. The peak position of νl, ν3 and ν4 band shifted 5 cm-1 to the shorter wave number. The most dramatic changes were the reduction of the intensity of ν4. From the above results it was demon- strated that the conformation of β-carotene molecules in the PS Ⅰ reaction center was not the same as that of free β-carotene molecules in solution, but similar to that of carotenoid molecules in the photosynthetic bacterial reaction center, in other words, they are likely to be in a twisted conformation.  相似文献   

2.
Previously, kinetic resonance Raman measurements as a function of pH have been used to demonstrate that, microseconds after light absorption, the pK of Schiff base deprotonation during the bacteriorhodopsin photocycle is 10.2 ± 0.3, whereas before the light event, the pK is > 12 (2). In this investigation, we have iodinated purple membrane suspensions and have found that the pK of Schiff base deprotonation in the photocycle has been lowered to between 7 and 8 for iodinated bacteriorhodopsin. These results, together with our previous data on the pK of Schiff base deprotonation, suggest that the amino acid tyrosine could be a critical component in the deprotonation mechanism.  相似文献   

3.
Using a rotating disk with a slit of variable width, a continuous wave argon ion laser, and an Optical Multichannel Analyzer for detection, a new technique is reported which should, in principle, be capable of recording resonance Raman spectra with time resolution of 100 ns. The resonance Raman spectra of the intermediates of the photosynthetic cycle of bacteriorhodopsin are recorded on the microsecond time scale. Both the kinetic results and the resonance enhancement profile suggest that deprotonation results in an intermediate preceding bM412 that has an optical absorption maximum at a wavelength longer than that of bM412.  相似文献   

4.
A new technique for the measurement of membrane surface potential is proposed and demonstrated. The method is based on the fact that a positively charged styryl dye molecule aggregates when present at high concentration in the Debye layer near a membrane bearing a negative surface potential. The dye in its aggregated form exhibits marked differences in its resonance Raman spectrum relative to the free dye molecules. This method was used to study the potential on the surfaces of the purple membrane that contains the pigment bacteriorhodopsin. A value of -29.5 mV was found for membranes with bacteriorhodopsin in its relaxed, light-adapted state, and the potential decreased to -34.5 mV when most of the bacteriorhodopsin was converted to the M412 intermediate. Because the dye probe does not diffuse through the lipid bilayer, it can be used to probe the potential on the external or internal surface of a vesicle. Thus, we found that the potential on the purple membrane was asymmetric and was localized mainly on the surface that faces the cytoplasm in the cell.  相似文献   

5.
Photoelectric properties of bacteriorhodopsin incorporated into a bimolecular lipid membrane were investigated with special regard to the mechanism of photoelectric field generation. It was shown that besides its proton pump and electric generator functions bacteriorhodopsin works as a possible molecular regulator of the light-induced membrane potential. When a bimolecular lipid membrane containing bacteriorhodopsin is continuously illuminated in its main visible absorption band, and afterwards by superimposed blue light matching the absorption band of the long-living photobleached bacteriorhodopsin (M412) as well, the latter either enhances or decreases the steady-state photoresponse, depending upon the intensity of the green light. Thus, the additional blue-light illumination tends to cause the resultant photoelectric membrane potential to become stabilized. Two alternative schemes are tentatively proposed for the photochemical cycle of bacteriorhodopsin whereby blue light can control photovoltage generation. A kinetic model of the proton pump and the regulation of the photoelectric membrane potential is presented. This model fits all the experimental findings, even quantitatively. From the model some kinetic and physical parameters of this light-driven pump could be determined.  相似文献   

6.
P. Ormos  Zs. Dancsházy  B. Karvaly 《BBA》1978,503(2):304-315
Photoelectric properties of bacteriorhodopsin incorporated into a bimolecular lipid membrane were investigated with special regard to the mechanism of photoelectric field generation. It was shown that besides its proton pump and electric generator functions bacteriorhodopsin works as a possible molecular regulator of the light-induced membrane potential. When a bimolecular lipid membrane containing bacteriorhodopsin is continuously illuminated in its main visible absorption band, and afterwards by superimposed blue light matching the absorption band of the long-living photobleached bacteriorhodopsin (M412) as well, the latter either enhances or decreases the steady-state photoresponse, depending upon the intensity of the green light. Thus, the additional blue-light illumination tends to cause the resultant photoelectric membrane potential to become stabilized. Two alternative schemes are tentatively proposed for the photochemical cycle of bacteriorhodopsin whereby blue light can control photovoltage generation. A kinetic model of the proton pump and the regulation of the photoelectric membrane potential is presented. This model fits all the experimental findings, even quantitatively. From the model some kinetic and physical parameters of this light-driven pump could be determined.  相似文献   

7.
An evolutionary engineering approach for enhancing heterologous carotenoids production in an engineered Saccharomyces cerevisiae strain was used previously to isolate several carotenoids hyper-producers from the evolved populations. β-Carotene production was characterized in the parental and one of the evolved carotenoids hyper-producers (SM14) using bench-top bioreactors to assess the impact of pH, aeration, and media composition on β-carotene production levels. The results show that with maintaining a low pH and increasing the carbon-to-nitrogen ratio (C:N) from 8.8 to 50 in standard YNB medium, a higher β-carotene production level at 25.52 ± 2.15 mg β-carotene g?1 (dry cell weight) in the carotenoids hyper-producer was obtained. The increase in C:N ratio also significantly increased carotenoids production in the parental strain by 298 % [from 5.68 ± 1.24 to 22.58 ± 0.11 mg β-carotene g?1 (dcw)]. In this study, it was shown that Raman spectroscopy is capable of monitoring β-carotene production in these cultures. Raman spectroscopy is adaptable to large-scale fermentations and can give results in near real-time. Furthermore, we found that Raman spectroscopy was also able to measure the relative lipid compositions and protein content of the parental and SM14 strains at two different C:N ratios in the bioreactor. The Raman analysis showed a higher total fatty acid content in the SM14 compared with the parental strain and that an increased C:N ratio resulted in significant increase in total fatty acid content of both strains. The data suggest a positive correlation between the yield of β-carotene per biomass and total fatty acid content of the cell.  相似文献   

8.
Advanced optical instruments can serve for analysis and manipulation of individual living cells and their internal structures. We have used Raman microspectroscopic analysis for assessment of β-carotene concentration in algal lipid bodies (LBs) in vivo. Some algae contain β-carotene in high amounts in their LBs, including strains which are considered useful in biotechnology for lipid and pigment production. We have devised a simple method to measure the concentration of β-carotene in a mixture of algal storage lipids from the ratio of their Raman vibrations. This finding may allow fast acquisition of β-carotene concentration valuable, e.g., for Raman microspectroscopy assisted cell sorting for selection of the overproducing strains. Furthermore, we demonstrate that β-carotene concentration can be proportional to LB volume and light intensity during the cultivation. We combine optical manipulation and analysis on a microfluidic platform in order to achieve fast, effective, and non-invasive sorting based on the spectroscopic features of the individual living cells. The resultant apparatus could find its use in demanding biotechnological applications such as selection of rare natural mutants or artificially modified cells resulting from genetic manipulations.  相似文献   

9.
Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance-enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells.  相似文献   

10.
Cyanobacteria possess a family of one-helix high-light-inducible proteins (HLIPs) that are widely viewed as ancestors of the light-harvesting antenna of plants and algae. HLIPs are essential for viability under various stress conditions, although their exact role is not fully understood. The unicellular cyanobacterium Synechocystis sp. PCC 6803 contains four HLIPs named HliA–D, and HliD has recently been isolated in a small protein complex and shown to bind chlorophyll and β-carotene. However, no HLIP has been isolated and characterized in a pure form up to now. We have developed a protocol to purify large quantities of His-tagged HliC from an engineered Synechocystis strain. Purified His-HliC is a pigmented homo-oligomer and is associated with chlorophyll and β-carotene with a 2:1 ratio. This differs from the 3:1 ratio reported for HliD. Comparison of these two HLIPs by resonance Raman spectroscopy revealed a similar conformation for their bound β-carotenes, but clear differences in their chlorophylls. We present and discuss a structural model of HliC, in which a dimeric protein binds four chlorophyll molecules and two β-carotenes.  相似文献   

11.
The resonance Raman spectrum of the dark-adapted form of the purple membrane protein (bacteriorhodopsin) has been obtained and is compared to the light-adapted pigment and model chromophore spectra. As in the light-adapted form, the chromophore-protein linkage is found to be a protonated Schiff base. Electron delocalization appears to play the dominant role in color regulation. The dark-adapted spectrum indicates a conformation closer to 13-cis than the light-adapted spectrum.  相似文献   

12.
The resonance Raman spectrum of the second intermediate in the bacteriorhodopsin cycle, bL550, is obtained by a simple flow technique. The Schiff base linkage in this intermediate appears to be protonated, contrary to previous suggestion. The fingerprint region of the spectrum of bL550 does not closely match those of any presently available model Schiff bases of retinal isomers, though some comparisons can be made. The resonance Raman spectrum of dark-adapted bacteriorhodopsin is obtained and decomposed by computer subtraction of the spectrum of bR570. The remaining spectrum does not match the spectra of any model compounds presently in the literature. The spectra of bL550 and dark-adapted bRDA/560 from purple membrane in H2O are compared to those in D2O. It is found that changes in the spectrum occur in the 1,600 - 1,650 cm-1 region as well as in the 800 - 1,000 cm-1 region, but apparently not in the fingerprint region (1,100 - 1,400 cm-1). The possibilities of conformational changes of the retinal chromophore in the light adaptation process as well as the photosynthetic cycle are discussed.  相似文献   

13.
Chlorophyll α and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz(THz) and visible range spectra of chlorophyll α and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll α and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll α and β-carotene. The absorption spectra of chlorophyll α in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.  相似文献   

14.
The resonance Raman spectrum of the carotenoid neurosporene is shown to be a sensitive monitor of absorption shifts, and thus changes in membrane potential, in chromatophores of the GlC mutant of Rhodopseudomonas sphaeroides. For a Raman excitation wavelength at 472.7 nm, the intensities of the two most prominent resonance Raman features (v1 and v2) respond very differently to small shifts in the absorption maxima. Thus, the ratio intensity v1/intensity v2 is a sensitive probe for absorption shifts. Changes in this ratio of approximately 20% were observed during a valinomycin induced diffusion potential. At 5 degrees C changes in the average intensity ratio of +6, -4 and -14% were brought about by oligomycin, FCCP and sodium deoxycholate, respectively. The changes in intensity ratio were temperature dependent and, in addition, effects due to the laser beam acting as an actinic light could be detected. Oscillatory changes were observed in absolute Raman and Rayleigh scattering intensities for chromatophores at 5 degrees C and for intact cells under growing conditions.  相似文献   

15.
The formation, stability and in vitro digestion of milk fat globule membrane (MFGM) proteins stabilized emulsions with 0.2 wt% β-carotene were investigated. The average particle size of β-carotene emulsions stabilized with various MFGM proteins levels (1%, 2%, 3%, 4%, 5% wt%) decreased with the increase of MFGM proteins levels. When MFGM proteins concentration in emulsions is above 2%, the average particle size of β-carotene emulsions is below 1.0 μm. A quite stable emulsion was formed at pH 6.0 and 7.0, but particle size increased with decrease in acidity of the β-carotene emulsion. β-carotene emulsions stabilized with MFGM proteins were stable with a certain salt concentrations (0–500 mMNaCl). β-carotene emulsions were quite stable to aggregation of the particles at elevated temperature and time (85 °C for 90 min). At the same time, β-carotene emulsions were stable against degradation under heat treatment conditions. In vitro digestion of β-carotene emulsion showed the mean particle size of β-carotene emulsions stabilized with MFGM proteins in the simulated stomach conditions and intestinal conditions is larger than that of initial emulsions and simulated mouth conditions. Confocal laser scanning microscopy of β-carotene MFGM proteins emulsions also showed the corresponding results to different vitro digestion model. There was a rapid release of free fatty acid (FFA) during the first 10 min and after this period, an almost constant 70% digestion extent was reached. Approximately 80% of β-carotene was released within 2 h of incubation under the simulated intestinal fluid. These results showed that MFGM protein can be used as a good emulsifier in emulsion stabilization, β-carotene rapid release as well as lipophilic bioactive compounds delivery.  相似文献   

16.
The addition of gramicidin-A to reconstituted purple membrane, significantly inhibits light-induced proton movement. Kinetic analyses indicate that the treatment decreases the initial proton pumping rate (Ro), alters the interdependence (m) between the pumping process and its associated H+ leak path (kL-kD), but has no detectable effect on the proton permeability associated with phospholipid bilayers in the dark (kD). These results suggest that gramicidin-A, under the experimental conditions, interacts directly with bacteriorhodopsin in the membrane. This suggestion is supported by the findings that both the resonance Raman and circular dichroism spectra of bacteriorhodopsin are affected by the antibiotic.  相似文献   

17.
Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role.  相似文献   

18.
Fourier transform infrared difference spectroscopy of bacteriorhodopsin at low temperature reveals at least two stable forms of bacteriorhodopsin570 and the K photoproduct. In the case of bacteriorhodopsin570, warming from 81 to 135 K causes a reduction in absorption of several chromophore vibrations, but not the C = N stretching mode. These changes are consistent with a reorientation of the chromophore which leaves the angle of the C = N bond unchanged relative to the membrane plane. In the case of the K intermediate, two different forms can be isolated at 135 K on the basis of wavelength-dependent photoalteration. One form is identical to the low temperature K630 species, whereas a second blue-shifted form is present only above 135 K. This new form exhibits a 985 cm-1 peak in the hydrogen-out-of-plane bending region, which is similar to a reported room-temperature resonance Raman spectrum of K. Temperature-dependent changes in the conformation of the protein involving possible alterations in peptide hydrogen bonding are also detected.  相似文献   

19.
I Grieger  G H Atkinson 《Biochemistry》1985,24(20):5660-5665
An investigation of the photolytic conditions used to initiate and spectroscopically monitor the bacteriorhodopsin (BR) photocycle utilizing time-resolved resonance Raman (TR3) spectroscopy has revealed and characterized two photoinduced reactions that interrupt the thermal pathway. One reaction involves the photolytic interconversion of M-412 and M', and the other involves the direct photolytic conversion of the BR-570/K-590 photostationary mixture either to M-412 and M' or to M-like intermediates within 10 ns. The photolytic threshold conditions describing both reactions have been quantitatively measured and are discussed in terms of experimental parameters.  相似文献   

20.
Glycocardiolipin is an archaeal analogue of mitochondrial cardiolipin, having an extraordinary affinity for bacteriorhodopsin, the photoactivated proton pump in the purple membrane of Halobacterium salinarum. Here purple membranes have been isolated by osmotic shock from either cells or envelopes of Hbt. salinarum. We show that purple membranes isolated from envelopes have a lower content of glycocardiolipin than standard purple membranes isolated from cells. The properties of bacteriorhodopsin in the two different purple membrane preparations are compared; although some differences in the absorption spectrum and the kinetic of the dark adaptation process are present, the reduction of native membrane glycocardiolipin content does not significantly affect the photocycle (M-intermediate rise and decay) as well as proton pumping of bacteriorhodopsin. However, interaction of the pumped proton with the membrane surface and its equilibration with the aqueous bulk phase are altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号