首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z′ values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth.  相似文献   

2.
We studied the thermal inactivation of yeast cytochrome b(2), the native flavohaemoprotein (FHP(n)) and its derivatives, the haemoprotein (HP) obtained by dissociation of FMN from FHP(n) and the reconstituted flavohaemoprotein (FHP(r)) (haemoprotein + FMN). The initial velocity of inactivation is faster in the presence of FMN. The substrate (L-lactate) or the competitive inhibitor (oxolate) protects only the flavohaemoproteins (FHP(n) and FHP(r)) from thermal inactivation by decreasing this velocity. In each case, the "protection constant", K(p), is determined.Several interpretations can be proposed to explain the lack of protection of the haemoprotein by its substrate: 1) the structure of the substrate-binding site depends on the presence of the FMN; 2) the substrate binding site exists, but the affinity is too small to be detected; 3) a hypothetical scheme is proposed, suggesting that the protein can exist under different thermally sensitive forms following whether FMN or substrate is present.  相似文献   

3.
Various flavin analogs were used as alternate substrates or competitive inhibitors to characterize the FMN binding sites of the NADH- and NADPH-specific FMN oxidoreductases from Beneckea harveyi. Several polyhydroxyl compounds were found to be poor competitive inhibitors for the FMN sites of these enzymes. The FMN binding sites of the two enzymes were found to be quite similar. The NADH:FMN oxidoreductase binds FMN exclusively through the isoalloxazine ring. The methyl groups at positions 7 and 8 contribute significantly to this binding. Utilizing lumichrome as a competitive inhibitor of the FMN binding site and AMP as a competitive inhibitor of the NADH binding site, we were able to determine that the NADH:FMN oxidoreductase forms an active ternary complex with NADH binding first in an ordered mechanism. The NADPH oxidoreductase also binds FMN primarily through the isoalloxazine ring. Unlike their participation in reaction with the NADH-specfic enzyme, the methyl groups at positions 7 and 8 are not involved in binding. There was no significant binding of the ribityl phosphate moiety with either enzyme. Both enzymes have lower Km values for lumiflavin than FMN.  相似文献   

4.
Adenosine aminohydrolase from calf intestinal mucosa is sensitive to changes in the cooperative water structure of its environment as induced by the cosolvent dioxane. When dioxane is added to lower the dielectric constant from that of 78 of neat water to about 74, V is approximately halved, competitive inhibition by N6-(Δ2-isopentenyl)adenosine is virtually abolished, and competitive inhibition by the product of the reaction, i.e., inosine, is significantly decreased (Ki changes from 0.2 to 0.5 mm inosine). Yet Km remains unaltered at 40 μm adenosine even to a dielectric constant of 66.Since both N6-(Δ2-isopentenyl)adenosine and inosine are competitive inhibitors, they cannot be bound by the enzyme at the same time as adenosine. The fact that substrate binding remains unaltered at dielectric constants where these inhibitors are impotent indicates that binding of these inhibitors by portions of the enzyme not directly involved in substrate binding is important. The degree of alteration of binding with increasing dioxane concentration is different for these two inhibitors, with appreciable inosine binding at mole fractions dioxane where N6-(Δ2-isopentenyl)-adenosine binding cannot be demonstrated. Because of this differential effect of dioxane on inosine and N6-(Δ2-isopentenyl)adenosine binding, it is apparent that two substances can be competitive inhibitors kinetically and yet be bound differently by an enzyme. Cosolvents may thus be useful probes for the study of enzyme inhibitor interactions. It is proposed that studies of cosolvent effects on enzyme catalysis and substrate and inhibitor binding are capable of revealing the sensitivities of these various sites to alterations in the dielectric constant of the medium and thus may be considered as models for enzyme behavior near cytoplasmic membranes in vivo.  相似文献   

5.
The reaction of NAD(P)H:flavin oxidoreductase (flavin reductase) from Photobacterium fischeri is proposed to follow a ping-pong bisubstrate-biproduct mechanism. This is based on a steady-state kinetic analysis of initial velocities and patterns of inhibition by NAD+ and AMP. The double reciprocal plots of initial velocities versus concentrations of FMN or NADH show, in both cases, a series of parallel lines. The Michaelis constants for NADH (FMN saturating) and FMN (NADH saturating) are 2.2 and 1.2 × 10?4m, respectively. The product NAD+ has been found to be an inhibitor competitive with FMN but non-competitive with NADH. Using AMP as an inhibitor, noncompetitive inhibition patterns were observed with respect to both NADH and FMN as the varied substrate. In addition, the reductase was not inactivated by treatment with N-ethylmaleimide either alone or in the presence of FMN, but the enzyme was inactivated by N-ethylmaleimide in the presence of NADH. These findings suggest that flavin reductase shuttles between disulfide- and sulfhydryl-containing forms during catalysis.  相似文献   

6.
Chorismate synthase of Neurospora crassa: a flavoprotein   总被引:4,自引:0,他引:4  
Chorismate synthase is purified from Neurospora crassa. The final step is accomplished by preparative electrophoresis. Its purity is estimated at ≥90% on the basis of analytical polyacrylamide gel electrophoresis. The enzyme appears to be active in at least two multimeric states, with a subunit molecular weight of ~55,000. The purified enzyme preparation is absolutely dependent on the presence of a reducing system, which can readily be provided under aerobic conditions by NADPH plus FMN or under stringent anaerobic conditions by dithionite. The following evidence implicates a physiological role for FMN in N. crassa chorismate synthase activity: (a) a preferential stimulation of activity by NADPH and FMN over other pyridine and flavin nucleotides, respectively, in both impure and purified enzyme preparations; (b) an alteration of the Chromatographic pattern of the enzyme on diethylaminoethylcellulose by the addition of FMN to the elution buffer; (c) an apparent binding of FMN to the enzyme as exhibited by gel filtration in the presence of the substrate, 3-enolpyruvylshikimate 5-phosphate; (d) a requirement for preliminary incubation with FMN, in concert with the substrate, to eliminate a reaction lag (i.e., to activate the enzyme); (e) a substrate-dependent diaphorase activity exhibited by purified enzyme preparations in the presence of FMN and NADPH. The observed activation and alteration of Chromatographic behavior of chorismate synthase by FMN suggest that the flavin nucleotide influences the conformation of the enzyme. The ability to replace NADPH and FMN with dithionite suggests that FMN mediates the flow of electrons from a source of reducing power (NADPH) to some enzymic site important to the function of the enzyme. Hence, the diaphorase activity which is observed as intrinsic to chorismate synthase of N. crassa may be significant from the standpoint of catalysis or may have importance as a regulatory mechanism.  相似文献   

7.
The flavin component of soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligeneseutrophus was identified as FMN by thin layer chromatography in two solvent systems and by binding studies with apoflavodoxin from Megasphaeraelsdenii. The flavin of hydrogenase reacted rapidly with apoflavodoxin with almost complete quenching of the fluorescence at 525 nm. Quantitative determination of FMN was performed by fluorimetric titration with a standardized solution of apoflavodoxin. From the determined FMN content of different enzyme preparations and from the percentage of stimulation of hydrogenase activity by exogenous FMN it is concluded that hydrogenase contains 2 FMN per molecule.  相似文献   

8.
Russell TR  Demeler B  Tu SC 《Biochemistry》2004,43(6):1580-1590
The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.  相似文献   

9.
1. Diethyl pyrocarbonate inactivated l-lactate oxidase from Mycobacterium smegmatis. 2. Two histidine residues underwent ethoxycarbonylation when the enzyme was treated with sufficient reagent to abolish more than 90% of the enzyme activity, but analyses of the inactivation showed that the modification of one histidine residue was sufficient to cause the loss of enzyme activity. The rates of enzyme inactivation and histidine modification were the same. 3. Substrate and competitive inhibitors decreased the maximum extent of inactivation to a 50% loss of enzyme activity and modification was decreased from 1.9 to 0.75–1.2 histidine residues modified/molecule of FMN. 4. Treatment of the enzyme with diethyl [14C]pyrocarbonate (labelled in the carbonyl groups) confirmed that only histidine residues were modified under the conditions used and that deacylation of the ethoxycarbonylhistidine residues by hydroxylamine was concomitant with the removal of the 14C label and the re-activation of the enzyme. 5. No evidence was found for modification of tryptophan, tyrosine or cysteine residues, and no difference was detected between the conformation and subunit structure of the modified and native enzyme. 6. Modification of the enzyme with diethyl pyrocarbonate did not alter the following properties: the binding of competitive inhibitors, bisulphite and substrate or the chemical reduction of the flavin group to the semiquinone or fully reduced states. The normal reduction of the flavin by lactate was, however, abolished.  相似文献   

10.
V Hines  M Johnston 《Biochemistry》1989,28(3):1222-1226
The steady-state kinetic mechanism of highly purified bovine liver mitochondrial dihydroorotate dehydrogenase has been investigated. Initial velocity analysis using S-dihydroorotate and coenzyme Q6 revealed parallel-line, double-reciprocal plots, indicative of a ping-pong mechanism. The dead-end inhibition pattern with barbituric acid and the reactions with alternate cosubstrates methyl-S-dihydroorotate and menadione also point to a ping-pong mechanism. However, product orotate was found to be competitive with dihydroorotate and uncompetitive with Q6. These findings suggest that dihydroorotate dehydrogenase may follow a nonclassical, two-site ping-pong mechanism, typical of an enzyme that contains two non-overlapping and kinetically isolated substrate binding sites. That these two sites communicate by an intramolecular electron-transfer system involving FMN and perhaps an iron-sulfur center is also suggested by the kinetic behavior of the enzyme.  相似文献   

11.
1. Dinitrophenylation of 2 +/- 0.2mol of residues/mol of enzyme-bound FMN resulted in the complete inactivation of the flavoenzyme L-lactate oxidase. 2. Hydrolysates of the inactivated enzyme contained 1mol each of Nim-Dnp-histidine (abbreviation: Dnp-,2,4-dinitrophenyl-; Nim indicates that either of the N atoms in the imidazole ring is substituted) and epsilon-Dnp-lysine/mol of FMN. 3. Competitive inhibitors decreased the extent of inactivation to a 10% loss of activity, and dinitrophenylation was decreased from 2 to approx. 0.5mol/mol of FMN. Only Nim-Dnp-histidine was detected in the hydrolysates. 4. Although the dinitrophenylated enzyme did not possess enzyme activitiy, L-lactate reduced approx. 50% of the enzyme-bound flavin slowly (0.6min-1), and approx. 50% of the flavin in the modified enzyme-bound flavin slowly (0.6min-1), and approx. 50% of the flavin in the modified enzyme formed a complex with bisulphite. 6. The modified enzyme (2mol of Dnp/mol of FMN) was unable to bind substrate analogues and competitive inhibitors.  相似文献   

12.
Somatic angiotensin-converting enzyme (ACE) contains two homologous domains, each bearing a functional active site. Studies on the selectivity of these ACE domains towards either substrates or inhibitors have mostly relied on the use of mutants or isolated domains of ACE. To determine directly the selectivity properties of each ACE domain, working with wild-type enzyme, we developed an approach based on the combined use of N-domain-selective and C-domain-selective ACE inhibitors and fluorogenic substrates. With this approach, marked differences in substrate selectivity were revealed between rat, mouse and human somatic ACE. In particular, the fluorogenic substrate Mca-Ala-Ser-Asp-Lys-DpaOH was shown to be a strict N-domain-selective substrate of mouse ACE, whereas with rat ACE it displayed marked C-domain selectivity. Similar differences in selectivity between these ACE species were also observed with a new fluorogenic substrate of ACE, Mca-Arg-Pro-Pro-Gly-Phe-Ser-Pro-DpaOH. In support of these results, changes in amino-acid composition in the binding site of these three ACE species were pinpointed. Together these data demonstrate that the substrate selectivity of the N-domain and C-domain depends on the ACE species. These results raise concerns about the interpretation of functional studies performed in animals using N-domain and C-domain substrate selectivity data derived only from human ACE.  相似文献   

13.
Two types of isopentenyl diphosphate:dimethylallyl diphosphate isomerases (IDI) have been characterized at present. The long known IDI-1 is only dependent on divalent metals for activity, whereas IDI-2 requires a metal, FMN and NADPH. Here, we report the first structure of an IDI-2 from Bacillus subtilis at 1.9A resolution in the ligand-free form and of the FMN-bound form at 2.8A resolution. The enzyme is an octamer that forms a D4 symmetrical open, cage-like structure. The monomers of 45 kDa display a classical TIM barrel fold. FMN is bound only with very moderate affinity and is therefore completely lost during purification. However, the enzyme can be reconstituted in the crystals by soaking with FMN. Three glycine-rich sequence stretches that are characteristic for IDI-2 participate in FMN binding within the interior of the cage. Regions harboring strictly conserved residues that are implicated in substrate binding or catalysis remain largely disordered even in the presence of FMN.  相似文献   

14.
BACKGROUND: Ribozymes can function as allosteric enzymes that undergo a conformational change upon ligand binding to a site other than the active site. Although allosteric ribozymes are not known to exist in nature, nucleic acids appear to be well suited to display such advanced forms of kinetic control. Current research explores the mechanisms of allosteric ribozymes as well as the strategies and methods that can be used to create new controllable enzymes. RESULTS: In this study, we exploit the modular nature of certain functional RNAs to engineer allosteric ribozymes that are activated by flavin mononucleotide (FMN) or theophylline. By joining an FMN- or theophylline-binding domain to a hammerhead ribozyme by different stem II elements, we have identified a minimal connective bridge comprised of a G.U wobble pair that is responsive to ligand binding. Binding of FMN or theophylline to its allosteric site induces a conformational change in the RNA that stabilizes the wobble pair and ultimately favors the active form of the catalytic core. These ligand-sensitive ribozymes exhibit rate enhancements of more than 100-fold in the presence of FMN and of approximately 40-fold in the presence of theophylline. CONCLUSIONS: An adaptive strategy for modular rational design has proven to be an effective approach to the engineering of novel allosteric ribozymes. This strategy was used to create allosteric ribozymes that function by a mechanism involving ligand-induced structure stabilization. Conceivably, similar engineering strategies and allosteric mechanisms could be used to create a variety of novel allosteric ribozymes that function with other effector molecules.  相似文献   

15.
Inhibition of porcine pancreatic alpha-amylase (1,4-alpha-D-glucan glucanohydrase) [EC 3.2.1.1] with maltotriitol (G3OH) and 4-phenylimidazole was investigated by using maltohexaitol (G6OH) and p-nitrophenyl-alpha-D-maltoside (G2PNP) as substrates. When G6OH was the substrate, both G3OH and 4-phenylimidazole behaved as competitive inhibitors. On the other hand, when G2PNP was the substrate, G3OH behaved as a competitive inhibitor, whereas 4-phenylimidazole behaved as a non-competitive inhibitor. Further inhibition study in the presence of both G3OH and 4-phenylimidazole, with G6OH as the substrate, showed that the two inhibitors compete with each other for the active site of the enzyme. Based on a consideration of the productive (reactive) binding modes of G2PNP and G6OH, and a nonproductive (nonreactive) binding mode of G2PNP, it is suggested that the binding sites of the two inhibitors may be partially overlapping around the catalytic site of the enzyme and that the rest of the binding site of each inhibitor lies along the substrate binding cleft of the enzyme.  相似文献   

16.
The ActVA-ActVB system from Streptomyces coelicolor is a two-component flavin-dependent monooxygenase involved in the antibiotic actinorhodin biosynthesis. ActVB is a NADH:flavin oxidoreductase that provides a reduced FMN to ActVA, the monooxygenase that catalyzes the hydroxylation of dihydrokalafungin, the precursor of actinorhodin. In this work, using stopped-flow spectrophotometry, we investigated the mechanism of hydroxylation of dihydrokalafungin catalyzed by ActVA and that of the reduced FMN transfer from ActVB to ActVA. Our results show that the hydroxylation mechanism proceeds with the participation of two different reaction intermediates in ActVA active site. First, a C(4a)-FMN-hydroperoxide species is formed after binding of reduced FMN to the monooxygenase and reaction with O(2). This intermediate hydroxylates the substrate and is transformed to a second reaction intermediate, a C(4a)-FMN-hydroxy species. In addition, we demonstrate that reduced FMN can be transferred efficiently from the reductase to the monooxygenase without involving any protein.protein complexes. The rate of transfer of reduced FMN from ActVB to ActVA was found to be controlled by the release of NAD(+) from ActVB and was strongly affected by NAD(+) concentration, with an IC(50) of 40 microm. This control of reduced FMN transfer by NAD(+) was associated with the formation of a strong charge.transfer complex between NAD(+) and reduced FMN in the active site of ActVB. These results suggest that, in Streptomyces coelicolor, the reductase component ActVB can act as a regulatory component of the monooxygenase activity by controlling the transfer of reduced FMN to the monooxygenase.  相似文献   

17.
Reductive dehalogenation is not typical of aerobic organisms but plays a significant role in iodide homeostasis and thyroid activity. The flavoprotein iodotyrosine deiodinase (IYD) is responsible for iodide salvage by reductive deiodination of the iodotyrosine derivatives formed as byproducts of thyroid hormone biosynthesis. Heterologous expression of the human enzyme lacking its N-terminal membrane anchor has allowed for physical and biochemical studies to identify the role of substrate in controlling the active site geometry and flavin chemistry. Crystal structures of human IYD and its complex with 3-iodo-l-tyrosine illustrate the ability of the substrate to provide multiple interactions with the isoalloxazine system of FMN that are usually provided by protein side chains. Ligand binding acts to template the active site geometry and significantly stabilize the one-electron-reduced semiquinone form of FMN. The neutral form of this semiquinone is observed during reductive titration of IYD in the presence of the substrate analog 3-fluoro-l-tyrosine. In the absence of an active site ligand, only the oxidized and two-electron-reduced forms of FMN are detected. The pH dependence of IYD binding and turnover also supports the importance of direct coordination between substrate and FMN for productive catalysis.  相似文献   

18.
Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD+, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD+ pool, and of NAD+-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD+ levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies.  相似文献   

19.
Reactive oxygen species (ROS) production by respiratory Complex I from Escherichia coli was studied in bacterial membrane fragments and in the isolated and purified enzyme, either solubilized or incorporated in proteoliposomes. We found that the replacement of a single amino acid residue in close proximity to the nicotinamide adenine dinucleotide (NADH)‐binding catalytic site (E95 in the NuoF subunit) dramatically increases the reactivity of Complex I towards dioxygen (O2). In the E95Q variant short‐chain ubiquinones exhibit strong artificial one‐electron reduction at the catalytic site, also leading to a stronger increase in ROS production. Two mechanisms can contribute to the observed kinetic effects: (a) a change in the reactivity of flavin mononucleotide (FMN) towards dioxygen at the catalytic site, and (b) a change in the population of the ROS‐generating state. We propose the existence of two (closed and open) states of the NAD+‐bound enzyme as one feature of the substrate‐binding site of Complex I. The analysis of the kinetic model of ROS production allowed us to propose that the population of Complex I with reduced FMN is always low in the wild‐type enzyme even at low ambient redox potentials, minimizing the rate of reaction with O2 in contrast to E95Q variant.  相似文献   

20.
Production of nitric oxide (NO) by nitric oxide synthase (NOS) requires electrons to reduce the heme iron for substrate oxidation. Both FAD and FMN flavin groups mediate the transfer of NADPH derived electrons to NOS. Unlike mammalian NOS that contain both FAD and FMN binding domains within a single polypeptide chain, bacterial NOS is only composed of an oxygenase domain and must rely on separate redox partners for electron transfer and subsequent activity. Here, we report on the native redox partners for Bacillus subtilis NOS (bsNOS) and a novel chimera that promotes bsNOS activity. By identifying and characterizing native redox partners, we were also able to establish a robust enzyme assay for measuring bsNOS activity and inhibition. This assay was used to evaluate a series of established NOS inhibitors. Using the new assay for screening small molecules led to the identification of several potent inhibitors for which bsNOS-inhibitor crystal structures were determined. In addition to characterizing potent bsNOS inhibitors, substrate binding was also analyzed using isothermal titration calorimetry giving the first detailed thermodynamic analysis of substrate binding to NOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号