首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kidney slices either were exposed to the cryoprotectants for 1 hr at room temperature and subsequently washed and incubated in fresh KR buffer containing only the radioactive metabolic tracers, or were immediately incubated for 2 hr at 37 °C in KR buffer containing the cryoprotectant and the tracers. Exposure to glycerol by incubation of kidney slices in Krebs-Ringer bicarbonate buffer containing varying concentrations of glycerol from 0 to 70% (vv) resulted in a pronounced inhibitory effect on the protein synthesizing activity, while thymidine incorporation into DNA and the α-aminoisobutyric acid uptake through the cell membranes were less affected. Exposure of the tissue to buffer containing dimethylsulfoxide (Me2SO) in concentrations of 10 to 20% (vv) resulted in a stimulatory effect on metabolism. At higher concentrations, Me2SO was toxic resulting in damaging effects on protein and DNA synthesis as well as on membrane integrity. The stimulatory effects of exposure to low concentrations of Me2SO on protein and DNA synthesis in kidney slices were concluded to be the result of an increased transport of precursors through the cell membranes.  相似文献   

2.
C Chin  J C Warren 《Steroids》1973,22(3):373-378
Estriol 16-hemisuccinate has been synthesized and covalently attached to Sepharose through 1,5-diaminopentane. A crude preparation of estradiol-17β dehydrogenase from human placenta was adsorbed on the gel. After extensive washing, the enzyme was eluted by M hydroxylamine in 0.1 M potassium phosphate buffer (20–50% glycerol), pH 7, at room temperature. An apparently homogeneous enzyme with a specific activity of 7.2 U/mg (82% recovery) was obtained. It is stable for weeks in the eluting buffer. The hydroxylamine can be removed by passing the enzyme solution over a Sephadex G-100 column or by dialyzing it against 0.1 M potassium phosphate buffer containing 20% glycerol. This one-step process makes purification of the enzyme simple and easy.  相似文献   

3.
Markedly unstable count rates were observed using a toluene-Triton (2:1, vv) scintillant during counting of water-soluble radioactive compounds when < 5% (vv) water was present, because of the separation of phases. Efficiency correction in these instances could not be made by using 3H2O as internal standard, because under the same conditions count rates with tritiated water were stable. Increasing water to ≥6% stabilized the count rates. With toluene-Triton (2:1, vv) scintillant, the water level should preferably be maintained between either 6 and 12 or 18 and 24% for 14C- and 3H-labeled compounds for counting at 6°C or at ambient temperature (but only between 6 and 12% for 3H counting at room temperature). With a “Tritosol” (Anal. Biochem.63, 555 (1975) modified to contain 35 ml of ethylene glycol, 140 ml of ethanol, 250 ml of Triton X-100, 575 ml of xylene, 3 g of PPO, and ±200 mg of POPOP, water levels of up to 23% were acceptable for 14C and 3H for counting at room temperature or at 6°C. Within these limitations, with the toluene-Triton or with the modified Tritosol as scintillant, both polar and apolar radioactive compounds exhibited similar efficiencies and gave quench-correction curves, based on the external standard ratio, that were linear for both 14C and 3H-labeled compounds.  相似文献   

4.
Heavy concentrations of viable P. berghei in the natural milieu [20% (vv) parasitized red blood cells, or 20% (wv) homogenate of splenic tissue in which malarial cells sequestered wer suspended in a serum-free, protective medium. Various rates of cooling are designated as low (1.3 °C/min) and intermediate (4 °C/ min) on exposure in cold gas evolving from liquid nitrogen refrigerant to ?70 °C, and this followed by direct immersion in the low temperature refrigerant (?196 °C). Cooling designated high was accomplished by abrupt immersion of the sealed vials with the live malaria-bearing tissue in the liquid nitrogen refrigerant. Rates of warming and thawing were designated low (after slow rewarming of frozen tissue in air at 25.5 °C) and high (after rapid rewarming and thawing in a water bath at 40 °C). Strip chart recordings were made of the complete cooling and freezing wave patterns of the suspending medium to ?70 ° C. The functional survivals of the freeze-thaw P. berghei malaria were measured by a special infectivity titration method.None of the cooling and freezing treatments adversely influenced the parasite survivals. Our data showed the optimum cooling velocity that maximally protected this highly lethal P. berghei strain within the host erythrocyte matrix was 1.3 ° C/min to ?70 to ?196 ° C. The functional survivals of two RBC stabilates with P. berghei, after retrieval from 25 days storage in the liquid nitrogen refrigerant, excelled by more than 100-fold the infectivity titer found by viability assay in the pool of the 0-days nonfrozen infected RBC.The precise factors favoring the maximal survivals of the freeze-thaw P. berghei are unclear. Several factors, singly or in combination, may have played key roles in protecting the living P. berghei from the freeze-thaw damage. These factors are: The composition of the suspending medium fortified by additions of bicarbonate, glucose, lactalbumin hydrolysate and yeastolate; the presence of naturally occurring peptide-containing materials surrounding the parasites in the host red cell milieu; and the protective glycerol agent. Any of these constituents singly or combined possess potential for reducing freeze-thaw injury to the parasites to produce maximal survivals.  相似文献   

5.
6.
J K Sherman  K C Liu 《Cryobiology》1973,10(2):104-118
One phase of a study on cryosurvival and cryoprotection of mammalian cells, in terms of ultrastructural alteration of rough endoplasmic reticulum (RER) within rat pancreatic acinar cells, is presented. Small (2–3 mm) squares of tissue, 0.7–0.9 mm in thickness, were compared as unfrozen controls, with (w) and without (wo) glycerol pretreatment (15% vv in mammalian Ringer's solution) at 0 °C and 22 °C (to regulate glycerol permeability); as well as parallel frozen-thawed samples, after combinations of slow (3.8 °C/min) freezing (SF) and rapid (38 °C/sec) freezing (RF) with either slow (1.5 °C/min) thawing (ST) or rapid (8 °C/sec) thawing (RT). Regimens compared were SFRT, SFST, RFRT, and RFST, all w and wo glycerol pretreatment at 0 °C and 22 °C. Tissue from each treatment was prepared for electron microscopic observations. The results on rates of freezing and thawing and relative cryoprotection of intracellular and extracellular glycerol under conditions described are intended to serve as a correlative basis for subsequent parallel studies on function (protein synthesis) and ultrastructure of the frozen state. They now indicate the following: (1) Cryoinjury of RER, which occurred during all treatments compared, was manifested in irregularity, dilatation, vesiculation, and altered matrix density of cisternae, and ribosomal derangement or disjunction. Least injury was shown by some disorientation and dilatation with increasing degrees of damage involving accentuation of these and other alterations. Such ultrastructural alterations to RER are not unique to cryoinjury, since they have been induced by treatments and agents other than freeze-thawing in experimental pathology. (2) Cryoinjury is unique, however, in that it can be regulated to demonstrate a spectrum of degrees of injury to cells and their organelles, immediately after cryoexposure. Controlled cryoinjury is suggested as a research tool for studies on injury, in general, on an ultrastructural-functional level. (3) Glycerol is injurious or toxic during pretreatment. Toxicity, which resembles cryoinjury, is greater during 22 ° C (intracellular) than 0 °C (extracellular) glycerol pretreatment, especially with respect to dilatation of cisternae. (4) Extra-cellular glycerol is cryoprotective during both slow and rapid freezing followed by either slow or rapid thawing, while little or no cryoprotection is afforded when glycerol is located simultaneously in the intracellular and extracellular location. (5) Rate of freezing is more important than rate of thawing as a factor in cryosurvival. Rapid freezing is more injurious than slow freezing, in the absence of glycerol or in the presence of extracellular glycerol, with slight or no differences seen as a function of thawing rate. Neither rate of freezing nor rate of thawing is of serious consequence when glycerol is intracellular. (6) Rate of thawing has importance after slow freezing, when slow thawing is more injurious than rapid, but not after rapid freezing, either in the presence or absence of extracellular glyeerol.  相似文献   

7.
This study was undertaken to determine optium conditions for the extraction and measurement of uterine nuclear estrogen receptor at low temperature. We measured the influence of glycero, 0.5 M KCl, 10 mM pyridoxal 5′-phosphate, and 0.5 M NaSCN on the dissocation of estradiol from the receptor at 0°C. The half-time (12) of estradiol dissociation from the receptor in 0.5 M KCl nuclear extracts containing 30% glycerol was very slow (greater than 250 h). Exclusion of glycerol from the extract (Tris buffer) increased the dissociation rate (t12 = 35 h). The inhibitory effect of glycerol on estradiol dissociation kinetics predominated over the mild stimulatory effect of KCl; and both effects were independent of the electrical conductivity of the buffer. When pyridoxal phosphate was added to a nuclear KCl extract (barbital fubber) lacking glycerol, dissociation of the estrogen-receptor complex increased such that the t12) decreased from 20 to 7.6 h; the receptor extracted from nuclei with 10 mM pyridoxal phosphate exhibited these same rapid dissociation kinetics. The t12 of estradiol dissociation from the receptor at 0°C in the presence of 0.5 M NaSCN was 5.6 h. Following extraction of uterine receptro by KCl, pyridoxal phosphate, or NaSCN, we measured the number of estradiol binding sites at each of two incubation temperatures: 30°C for 1 hr and 0°C for 24 h. We verified that unoccupied receptors was measured reliability in KCl extract during incubation at 0°C in the presence of glycerol. Total receptor can be determined using either pyridoxal phosphate extract or NaSCN extract at low temperature. However, the number of sites recovered in either pyridoxal phosphate or NaSCN extract was twice the number obtained with the KCl procedure at elevated temperature. It is noteworthy that pyridoxal phosphate and NaSCN increased the number of sites when added directly to nuclear KCl extract, and the effect of pyridoxal phosphate and NaSCN was reversed by treatment with L-lysine and dialysis against KCl, respectively. Thus, the lower receptor recovery with the KCl procedure is not due to the inability of KCl to extract these sites from the nucleus but rather is ascribable to the assay procedure itself. Although total receptor can be measured at low temperature with either NaSCN or pyridoxal phosphate, the pyridoxal phosphate method can be used to assay nuclear progesterone receptor in tha same extract.  相似文献   

8.
Purified inulinase (inulase, 2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) of Kluyveromyces fragilis has been immobilized on 2-aminoethyl-cellulose by treatment with 2% glutaraldehyde in 0.05 m phosphate buffer, pH 7.0, for 2 h at room temperature. The immobilized enzyme preparation had 39.3 units inulinase activity per gram dried matrix, with 53.4% recovery yield of activity, and showed good operational stability in the presence of substrate, inulin or the tuber extract of Jerusalem artichoke. Optimum pH and temperature were 5.5 and 45°C, respectively. In a batch reactor, the conversion was 90% (d-fructose/d-glucose = 76/24) and 34 mg d-fructose per ml was produced from the artichoke tuber extract by the immobilized inulinase in 20 h. In column reactor packed with 28 ml immobilized enzyme, the following conditions were found to be optimal: height/diameter ratio of column, 10.3; space time, 3.8 h; temperature, 40°C. Operation under these conditions gave 90% conversion of a 7% inulin solution and the productivity was 102 mmol l?1 h?1.  相似文献   

9.
Hearts removed from 17–19 day fetal mice were frozen in liquid nitrogen and tested for electrical activity after rewarming. After exposure to various cryoprotective agents, hearts were cooled at 0.5–0.7 °C/min. to ?100 °C and then stored in liquid nitrogen for periods between 72 and 216 hr. Exposure to controlled microwaves at 2450 MHz or immersion in a water bath at 25 C was used in thawing. Electrical activity was studied for periods as long as 90 days after subcutaneous implantation into the ear of syngeneic adult mice. Overall, 59% of 54 frozen-thawed fetal hearts showed strong electrical activity after 30 days when the cryoprotective solution that had been used contained 10% (vv) dimethylsulfoxide (DMSO) and 10% (vv) fetal calf serum in Hepes buffer. This system consists of a multicellular structure that is nourished by diffusion; it is well suited for the evaluation of different cryoprotective agents and for various thawing techniques.  相似文献   

10.
Human serum transcobalamin II (TC II), a vitamin B12 (Cbl) transport protein, complexes with Cibacron Blue F3GA, a reactive blue dye which can bind to proteins that require nucleotides as cofactors. Apo-TC II and holo-TC II both bind, but intrinsic factor (IF) and R-type binders of Cbl do not. Other mammalian species TC II also complex with the dye. Greater than 87% of the applied TC II-CN-[57Co]Cbl remains bound to the dye even at pH 4.0. At pH values below this, the CN-[57Co]Cbl dissociates off TC II which remains bound to the dye. High salt concentrations will break the TC II-dye complex. Ionic forces were considered not to be involved since complexing also occurred at pH 9.0, 2.5 pH units above the isoelectric point of TC II. Failure to dissociate the TC II-dye complex with 50% glycerol makes hydrophobic interactions unlikely. In addition to the potential uses of TC II-Cibacron Blue F3GA complexes in a total scheme for protein purification, the possibility that TC II is a nucleotide-requiring protein should be explored.  相似文献   

11.
Washed human erythrocytes were cooled at different rates from +37 °C to 0 °C in hypertonic solutions of either NaCl (1.2 m) or of a mixture of sucrose (40% wv) with NaCl (2.53% wv). Thermal shock hemolysis was measured and the surviving cells were examined for their mass and cell water content and also for net movements of sodium, potassium, and 14C-sucrose. The results were compared with those obtained from cells in sucrose (40% wv) initially, cooled at different rates to ?196 °C and rapidly thawed.The cells cooled to 0 °C in NaCl (1.2 m) showed maximal hemolysis at the fastest cooling rate studied (39 °C/min). In addition in the surviving cells this cooling rate induced the greatest uptake of 14C-sucrose and increase in cell water and cell mass and also entry of sodium and loss of cell potassium. A different dependence on cooling rate was seen with the cells cooled from +37 °C to 0 °C in sucrose (40% wv) with NaCl (2.53% wv). In this solution, survival decreased both at slow and fast cooling rates correlating with the greatest uptake of cell sucrose and increase in cell water. There was extensive loss of cell potassium and uptake of sodium at all cooling rates, the cation concentrations across the cell membrane approaching unity.The cells frozen to ?196 °C at different cooling rates in sucrose (40% wv) initially, also showed sucrose and water entry on thawing together with a loss of cell potassium and an uptake of cell sodium. More sucrose entered the cells cooled slowly (1.8 ° C/min) than those cooled rapidly (318 ° C/min).These results show that cooling to 0 °C in hypertonic solutions (thermal shock) and freezing to ?196 °C both induce membrane leaks to sucrose as well as to sodium and potassium. These leaks are not induced by the hypertonic solutions themselves but are due to the effects of the added stress of the temperature reduction on the membranes modified by the hypertonic solutions. The effects of cooling rate are explicable in terms of the different times of exposure to the hypertonic solutions. These results indicate that the damage observed after thermal shock or slow freezing is of a similar nature.  相似文献   

12.
There are increasing numbers of exceptions to a central tenet in cryobiology that low-molecular-weight protective solutes such as glycerol must permeate cells in high concentration in order to protect them from freezing injury. To test this supposition, it is necessary to determine the amount of solute that has permeated a cell prior to freezing. The amount in human red cells was estimated from the flux equation dsdt = PγA[(activity external solute) — (activity internal solute)]. Solving the equation required knowledge of Pγ the permeability constant for the solute. Estimates of Pγ for glycerol were made in two ways: (i) by measuring the time to 50% hemolysis of human red cells suspended in 1 or 2 m solutions of glycerol that were hypotonic with respect to NaCl, and (ii) by measuring the time required for red cells in 1 or 2 m solutions of glycerol in isotonic saline-buffer to undergo osmotic shock upon tenfold dilution with isotonic saline-buffer. The measurements were made at 0 and 20 °C. The values of Pγ were about 2.5 × 10?4 cm/min at 20 °C and about 0.9 × 10?4 cm/min at 0 °C. The difference corresponds to an activation energy of 7.2 kcal/mole. These values of Pγ are 100 to 600 times higher than those for glycerol permeation in the bovine erythrocyte. The values of P were relatively unaffected by whether calculations were based on classical or irreversible thermodynamics and by the choice of concentration units in the flux equations. Calculations of the kinetics of glycerol entry using these P values showed that the concentration of intracellular glycerol reaches 90% of equilibrium in 1.2 min at 0 °C and in 0.6 min at 20 °C. The osmolal ratio of intracellular glycerol to intracellular nonpermeating solutes reaches 90% of equilibrium in 7 min at 0 °C and in 3.2 min at 20 °C.  相似文献   

13.
Angiotensins I, II, and III were separated by reversed-phase high-performance liquid chromatography on an octadecylsilyl column. The peptides were isocratically eluted with 50 mm NaH2PO4-25% (vv) acetonitrile, pH 6.0. The retention times were 3.3, 6.0, and 9.6 min for angiotensin II, III, and I, respectively. 125I-Angiotensins II, III, and I eluted with retention times of 5.4, 16.8, and 19.9 min, respectively, under the same chromatographic conditions used for the unlabeled angiotensins. The effect of iodination of the tyrosine residue on the retention time was also demonstrated by chromatographic comparison of tyrosine and diiodotyrosine. Saralasin (Sar1, Ala8-angiotensin II), a partial agonist of angiotensin II, and des-Asp1, Ile8-angiotensin II, an inhibitor of angiotensin III, eluted with retention times of 2.5 and 3.9 min, respectively.  相似文献   

14.
The oxyferro intermediate of highly purified microsomal P-450 from rabbit liver was formed and stabilized at ?30°C in a mixture of aqueous buffer and glycerol (11). Absolute and difference (Fe2·+O2-Fe3+) spectra of this intermediate appear to be very similar to those obtained under either steady state kinetics or stopped flow conditions on the same cytochrome as well as on bacterial P-450cam. (Absolute and difference spectra present maxima at 420 and 557–558 nm and a broad maximum at 442 nm respectively). As temperature increases the oxyferro intermediate autoxidizes and ferric cytochrome P-450 is restored. This reaction appears to follow biphasic first order kinetics. The rate constant of both phases decreases with temperature and increases with protons concentrations.  相似文献   

15.
The preferential interaction of calf brain tubulin with glycerol in an aqueous buffer (0.01 m-NaPi, 0.02 m-NaCl, 10?4m-GTP, pH 7.0) has been investigated by densimetry. The apparent specific volumes of tubulin at constant chemical potential of the diffusible components were determined at 0, 10, 20 and 30% (vv) glycerol. Application of multicomponent solution thermodynamics shows that tubulin is preferentially hydrated in aqueous glycerol solvent and that such interaction results in thermodynamic destabilization of the system by raising the chemical potentials of both glycerol and tubulin. Interpreted in terms of the Wyman linkage function, the unfavorable free energy change brought about by the preferential protein-glycerol interaction can account for the glycerol enhancement of tubulin self-assembly in vitro into microtubules as well as offer a rationale for glycerol stabilization of the native tubulin conformation.  相似文献   

16.
The factors that affect the survival of mouse lymphocytes throughout a procedure for storage at ?196 °C have been studied both for the improvement of recovery and the possible extension to the mouse system of cell selection by freezing. After thawing, the survival of cells cooled at different rates in dimethyl sulphoxide (DMSO, 5 or 10%, vv) was assessed from the [3H]thymidine incorporation in response to phytohaemagglutinin and concanavalin A. Before freezing the protection against freezing damage increased with time (up to 20 min) in DMSO (5%, vv) at 0 °C. Superimposed upon this effect was toxicity due to the DMSO. During freezing and thawing the cooling rate giving optimal survival was 8 to 15 °C/min for cells in DMSO (5%) and 1 to 3 °C/min for DMSO (10%). Omission of foetal calf serum was detrimental. Rapid thawing (>2.5 °C/min) was superior to slow thawing. After thawing dilution at 25 or 37 °C greatly improved cell survival compared with 0 °C; at 25 °C survival was optimal (75%) at a moderate dilution rate of 2.5 min for a 10-fold dilution in FCS (10%, vv) followed by gentle centrifugation (50g).Dilution damage during both thawing and post-thaw dilution may be due to osmotic swelling as DMSO and normally excluded solutes leave the cell. The susceptibility of the cell membrane to dilution damage may also be increased during freezing. The need to thaw rapidly and dilute at 25 °C after thawing is probably due to a decrease in dilution stress at higher temperatures. Optimisation of dilution procedures both maximised recovery and also widened the range of cooling rates over which the cells were recovered. These conditions increase the possibility of obtaining good recovery of a mixed cell population using a single cooling procedure. Alternatively, if cell types have different optimal cooling rates, stressful dilution may allow their selection from mixed cell populations.  相似文献   

17.
《FEBS letters》1986,200(1):76-80
  相似文献   

18.
The process of bacteriophage T4 morphogenesis was studied using a heat leakage scanning calorimeter. Thermograms of defective mutant 49 (am NG727) in permissive and non-permissive cells of Escherichia coli showed a difference in thermal properties between packaged and non-packaged DNA molecules. In vivo, non-packaged DNA carried out their thermal transition at 85°C, the same temperature as that of T4 DNA melting measured in the standard saline citrate buffer, while the packaged DNA gave a sharper peak at 87°C due to some interaction with the head shell structure. Empty head shells showed a sharp heat absorption peak at 89°C both in vivo and in vitro, indicating the high degree of cooperativity in their conformational changes.  相似文献   

19.
The two-step cooling procedure has been used to investigate factors involved in cell injury. Chinese hamster fibroblasts frozen in dimethylsulphoxide (5%, vv) were studied. Survival was measured using a cell colony assay and simultaneous observations of cellular shrinkage and the localization of intracellular ice were done by an ultrastructural examination of freeze-substituted samples.Correlations were obtained between survival and shrinkage at the holding temperature. However, cells shrunken at ?25 °C for 10 min (the optimal conditions for survival on rapid thawing from ?196 °C) contain intracellular ice nuclei at ?196 °C detectable by recrystallization. These ice nuclei only form below ?80 °C and prevent recovery on slow or interrupted thawing but not on rapid thawing. Cells shrunken at ?35 °C for 10 min (just above the temperature at which intracellular ice forms in the majority of rapidly cooled cells) can tolerate even slow thawing from ?196 °C, suggesting that they contain very few or no ice nuclei even in liquid nitrogen. Damage may correlate with the total amount of ice formed per cell rather than the size of individual crystals, and we suggest that injury occurs during rewarming and is osmotic in nature.  相似文献   

20.
An amylase with a molecular mass of 55 kDa and an N-terminal sequence exhibiting similarity to enzyme from Bacteroides thetaitaomicron was isolated from fruiting bodies of the monkey head mushroom Hericium erinaceum. The purification scheme included extraction with distilled water, ion exchange chromatography on DEAE-cellulose and SP-sepharose, and gel filtration by FPLC on Superdex 75. The amylase of H. erinaceum was adsorbed on DEAE-cellulose in 10 mM Tris-HCl buffer (pH 7.4) and eluted with 0.2 M NaCl in the same buffer. The enzyme was subsequently adsorbed on SP-Sepharose in 10 mM ammonium acetate buffer (pH 4.5) and eluted with 0.3 M NaCl in the same buffer. This fraction was subsequently subjected to gel filtration on Superdex 75. The first peak eluted had a molecular mass of 55 kDa in SDS-PAGE. The amylase of H. erinaceum exhibited a pH optimum of 4.6 and a temperature optimum of 40°C. The enzyme activity was enhanced by Mn2+ and Fe3+ ions, but inhibited by Hg2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号