首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the functional consequences of the pharmacological modulation of the M‐current (IKM) on cytoplasmic Ca2+ intracellular Ca2+concentration ([Ca2+]i) changes and excitatory neurotransmitter release triggered by various stimuli from isolated rat cortical synaptosomes have been investigated. Kv7.2 immunoreactivity was identified in pre‐synaptic elements in cortical slices and isolated glutamatergic cortical synaptosomes. In cerebrocortical synaptosomes exposed to 20 mM [K+]e, the IKM activator retigabine (RT, 10 μM) inhibited [3H]d ‐aspartate ([3H]d ‐Asp) release and caused membrane hyperpolarization; both these effects were prevented by the IKM blocker XE‐991 (20 μM). The IKM activators RT (0.1–30 μM), flupirtine (10 μM) and BMS‐204352 (10 μM) inhibited 20 mM [K+]e‐induced synaptosomal [Ca2+]i increases; XE‐991 (20 μM) abolished RT‐induced inhibition of depolarization‐triggered [Ca2+]i transients. The P/Q‐type voltage‐sensitive Ca2+channel (VSCC) blocker ω‐agatoxin IVA prevented RT‐induced inhibition of depolarization‐induced [Ca2+]i increase and [3H]d ‐Asp release, whereas the N‐type blocker ω‐conotoxin GVIA failed to do so. Finally, 10 μM RT did not modify the increase of [Ca2+]i and the resulting enhancement of [3H]d ‐Asp release induced by [Ca2+]i mobilization from intracellular stores, or by store‐operated Ca2+channel activation. Collectively, the present data reveal that the pharmacological activation of IKM regulates depolarization‐induced [3H]d ‐Asp release from cerebrocortical synaptosomes by selectively controlling the changes of [Ca2+]i occurring through P/Q‐type VSCCs.  相似文献   

2.
We investigated the early effects of the anti-idiotypic antibody (clone 1D5), which recognized the estrogen receptor (ER), on cytosolic free calcium concentration ([Ca2+]i) and its long term effects on creatine kinase (CK) specific activity in female human and rat osteoblasts. These actions were compared to the known membrane and genomic effects of 17β estradiol (E2). Like E2, clone 1D5 increased within 5 s [Ca2+]i in both cell types by two mechanisms: 1) Ca2+ influx through voltage-gated Ca2+ channels as shown by using EGTA, a chelator of extracellular Ca2+, and nifedipine, a Ca2+ channel blocker; 2) Ca2+; mobilization from the endoplasmic reticulum as shown by using phospholipase C inhibitors, such as neomycin and U-73122, which involved a Pertussis toxin-sensitive G-protein. Clone 1D5 and E2 stimulated CK specific activity in human and rat osteoblasts with ten fold higher concentrations than those needed for the membrane effects (0.1 μg/ml and 10 pM, respectively). Both effects were gender-specific since testosterone and 5α-dihydotesterone were uneffective. Tamoxifen and Raloxifene, two estrogen nuclear antagonists, inhibited CK response to 1D5 and E2 and Ca2+ response to 1D5, but not CA2+ response to E2. By contrast, (Fab′)2 dimer, a proteolytic fragment of 1D5 with antagonist properties, inhibited both membrane and genomic effects of 1D5 and E2. In conclusion, these results imply that clone 1D5 has an estrogen like activity both at the membrane and nuclear levels in female human and rat osteoblasts. 1D5 must therefore interact with membrane binding sites, penetrate the cells, and reach the nuclear receptors by an as yet uncharacterized mechanism. J. Cell. Biochem. 65:53–66. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Cyclic AMP levels have been measured in cultures derived from 12-day-old chick embryonic muscle. A rise in concentration was found after the onset of myoblast fusion. Cells cultured at a medium Ca2+ concentration of 0.1 μM did not fuse and exhibited only a small rise in cyclic AMP concentration during culture. Addition of 1.4 mM Ca2+ to these cells after 50 h in culture caused rapid, synchronous fusion with a concomitant rise in cyclic AMP levels. Indomethacin, an inhibitor of prostaglandin synthesis, did not inhibit fusion, but inhibited the rise in cyclic AMP concentration. Indomethacin-treated cultures exhibited lower creatine kinase levels, though no change in the ratio of the three isoenzymes was observed. Addition of prostaglandins E1 and E2 to indomethacin-treated cultures overcame this inhibition. We propose that prostaglandin synthesis is a consequence of the stimulation of myoblast fusion and that via cyclic AMP it stimulates protein synthesis.  相似文献   

4.
The effects of prostaglandins E2 and F on the electrofusion of pea (Pisum sativum cv Ran 1) mesophyll protoplasts were examined. Prostaglandins E2 and F influenced electrofusion by lowering the threshold voltage necessary for fusion of dielectrophoretically arranged pairs of protoplasts. The direct current voltage threshold decreased with increasing Ca2+ concentration up to 0.1 millimolar CaCl2 and the effects of prostaglandins E2 and F were more pronounced when CaCl2 was present in the medium. Treatment with calcium channel blocker methoxy verapamil did not change the prostaglandin effects, while the addition of ethyleneglycol-bis (β-aminoethyl either)-N,N,N′,N′-tetraacetic acid, which binds free Ca2+, increased the threshold voltage. Influence of prostaglandins E2 and F and Ca2+ on the membrane fluidity was investigated by analysis of pyrene fluorescence spectra. The values of the ratio between the maximum fluorescence emission intensities of the excimer and the monomer forms (Iex/Imon) indicated that prostaglandins and Ca2+ decrease the membrane fluidity. It is proposed that electrically evoked displacement of plasmalemma components takes part in the fusion process (U Zimmermann 1982 Biochim Biophys Acta 694: 227-277). We suggest that prostaglandins E2 and F facilitate the electrofusion of pea mesophyll protoplasts by changing the fluidity of plasmalemma.  相似文献   

5.
《Life sciences》1993,53(22):PL359-PL364
This study examines the mechanism of action of ketamine, a dissociative anesthetic, with a specific focus on its ability to inhibit changes in the concentration of intracellular free calcium, [Ca2+]i, in PC-12 cells. The resting [Ca2+]i as measured with the fluorescent probe Fura-2 AM in control cells is 184.8±8.6 nM (mean±SEM, n = 15). Changes in [Ca2+]i via influx through voltage-gated calcium channels after membrane depolarization with potassium chloride were monitored in the absence and presence of various concentrations of ketamine. Potassium-depolarization caused a dose-dependent rapid increase in [Ca2+]i, averaging 62±5%, 33±2% and 18±3% (n = 10 each) above control levels for 70 mM, 50 mM and 35 mM KCl, respectively. Ketamine, in the dosage range studied (5 – 500 μM), inhibited the increase in [Ca2+]i stimulated by potassium-depolarization in a dose-dependent manner. The computer-fitted dose-response curve of the pooled data yielded a half maximal suppression concentration, ED50, of 33 μM. In conclusion, this study demonstrates that ketamine inhibits Ca2+ influx through voltage-gated Ca2+ channels in PC-12 cells at clinically relevant doses, and may play a role in ketamine's action as a general anesthetic agent.  相似文献   

6.
Cd2+, Mn2+, and Al3+ inhibited synaptosomal amine uptake in a concentration-dependent and time-dependent manner. In the absence of Ca2+, the rank order of inhibition of noradrenaline uptake was: Cd2+ (IC50 = 250 μM) > Al3+ (IC50 = 430 μM) > Mn2+ (IC50 = 1.50 mM), the IC50 being the concentration of metal ions that gave rise to 50% inhibition of uptake. In the presence of 1 mM Ca2+, the rank order of inhibition of uptake was: Al3+ (IC50 = 330 μM) > Cd2+ (IC50 = 540 μM) > (IC50 = 1.5 mM). The rank order of inhibition of serotonin uptake without Ca2+ was: Al3+ (IC50 = 370 μM) > Cd2+ (IC50 = 610 μM) > Mn2+ (IC50 = 3.4 mM) and the rank order in the presence of 1 mM Ca2+ was: Al3+ (IC50 = 290 μM) > Cd2+ (IC50 = 1.5 mM) > Mn2+ (IC50 = 4.0 mM). Ca2+, at 1 mM, definitely antagonized the inhibitory actions of Cd2+ on noradrenaline and serotonin uptake. Al3+ stimulated noradrenaline uptake at concentrations around 20–250 μM but inhibited this uptake at concentrations exceeding 300 μM in a dose-related fashion. Ca2+, at 1 mM, enhanced both the stimulatory and inhibitory effects of Al3+. Ca2+ also enhanced the inhibitory actions of Al3+ on seotonin uptake. These results, in conjunction with those we have previously published, suggest that Cd2+, Mn2+, and Al3+ exert differential and selective effects on the structure and function of synaptosomal membranes.  相似文献   

7.
In hamster adipocyte ghosts, ACTH stimulates adenylate cyclase by a GTP-dependent process, whereas prostaglandin E E1, α-adrenergic agonists and nicotinic acid inhibit the enzyme by a mechanism which is both GTP- and sodium-dependent. The influence of the divalent cations Mn2+ and Mg2+, was studied on these two different, apparently receptor-mediated effects on the adipocyte adenylate cyclase. At low Mn2+ concentrations, GTP (1 μM) decreased enzyme activity by about 80%. Under this condition, ACTH (0.1 μM) stimulated the cyclase by 6- to 8-fold, and NaCl (100 mM) caused a similar activation. In the presence of both GTP and NaCl, prostaglandin E1 (1 or 10 μM) and nicotinic acid (30 μM) inhibited the enzyme by about 70–80% and epinephrine (300 μM, added in combination with a β-adrenergic blocking agent) by 40–50%. With increasing concentrations of Mn2+, the GTP-induced decrease and the NaCl-induced increase in activity diminished, with a concomitant decrease in prostaglandin E1?, nicotinic acid- and epinephrine-induced inhibitions as well as in ACTH-induced stimulation. At 1 mM Mn2+, inhibition of the enzyme was almost abolished and stimulation by ACTH was largely reduced, whereas activation of the enzyme by KF (10 mM) was only partially impaired. The uncoupling action of Mn2+ on hormone-induced inhibition was half-maximal at 100–200 μM and appeared not to be due to increased formation of the enzyme substrate, Mn · ATP. It occurred without apparent lag phase and could not be overcome by increasing the concentration of GTP. Similar but not identical findings with regard to adenylate cyclase stimulation and inhibition by hormonal factors were obtained with Mg2+, although about 100-fold higher concentrations of Mg2+ than of Mn2+ were required. The data indicate that Mn2+at low concentrations functionally uncouples inhibitory and stimulatory hormone receptors from adenylate adenylate cyclase in membrane preparations of hamster adipocytes, and they suggest that the mechanism leading to uncoupling involves an action of Mn2+ on the functions of the guanine nucleotide site(s) in the system.  相似文献   

8.
The adenylate cyclase activity of human ejaculated spermatozoa in broken-cell preparations was investigated. In the presence of 5 mM metal cations and 0.1 mM ATP, the relative enzyme activity with Mn2+, Ca2+, Mg2+, Ba2+ was 1.00, 0.28, 0.22, and 0.03, respectively. Added Ca2+ appeared to activate the enzyme in the presence of Mn2+ or Mg2+. The human sperm adenylate cyclase was stimulated by ~ 2-fold by free Ca2+ (lmM) in the presence of Mg2+ (5 mM). If the GTP analogue, 5′-guanylyl imidophosphate (Gpp(NH)p) was added to the sperm homogenate in the presence of 200 μM ethylene-glycol-bis (β-aminoethylether) N,N′-tetraacetic acid (EGTA), the adenylate cyclase activity was increased by approximately 25%, but with the addition of 280 μM Ca2+ there was a decrease in enzyme activity. A similar response to low concentrations of Ca2+ was obtained after complementation of the sperm enzyme with the guanine nucleotide regulatory component from human erythrocytes, where the addition of 40 μM Gpp(NH)p, 200 μM EGTA, and Ca2+ (≤ 160 μM) stimulated the sperm enzyme ~ 3–4-fold, but the further addition of Ca2+ (280 μM, final) neutralized the stimulatory effect. The addition of adenosine, and the nucleotides 5′-AMP and 5′-ADP inhibited the enzyme, whereas guanine and 5′-GMP had no appreciable effect. Human follicular fluid and serum also had little direct effect on the sperm adenylate cyclase. These resuls suggest that Ca2+ might be an important physiological modulator of the human sperm adenylate cyclase.  相似文献   

9.
AlCl3, MnCl2, and CdCl2 inhibited the rates of accumulation of 14C] L-glutamate and 3H] gammaaminobutyrate (GABA) in purified rat forebrain nerve-ending particles in a dose-dependent fashion. The concentrations that would give 50% inhibition (IC50) of GABA transport were 316 μM, 7.4 mM, and 1.4 mM, respectively. Ca2+ (1 mM) enhanced the inhibitory effect of Al3+ (IC50 decreased to 149 μM) but antagonized that of Mn2+ (IC50 = 10 mM) and Cd2+ (IC50 = 2.1 mM). For glutamate transport 1 mM Ca2+ changed the IC50 values from 299 to 224 μm for Al3+, 7.1 to 10 mM for Mn2+, and 2 to 3 mM for Cd2+. In contrast, the rates of accumulation of 14C] 2-deoxy-glucose and 3H] L-phenylalanine were mostly unaffected by these metal ions. The results indicate that Al3+, Mn2+, and Cd2+ exerted selective and differential effects on the transport systems of neurotransmitter substances in the synaptosomal membrane.  相似文献   

10.
In the presence of 1.0 mM ATP and MgCl2, the specific viscosity of suspensions of human erythrocyte ghosts decreases 35% in 20 minutes at 22°C. The changes in viscosity are a sensitive index of Mg-ATP dependent shape changes in these membranes. Low concentrations of Ca2+ (1 to 5 μM) inhibit Mg-ATP dependent viscosity changes. If ghosts were preincubated with 1 mM Mg-ATP and 20 μM A23187 to produce a maximal decrease in viscosity, addition of 10 μM Ca2+ to the preincubated ghosts increased the viscosity to levels observed in ghosts preincubated without ATP. Ca2+ (1 to 5 μM) also inhibited Mg2+ dependent phosphorylation 30% and stimulated dephosphorylation 25% in ghost membranes. These effects of Ca2+ on viscosity and phosphorylation may be due to a membrane bound Ca2+ phosphatase activity which dephosphorylates membranes phosphorylated by a Mg2+ dependent kinase activity.  相似文献   

11.
La3+ was found to inhibit the secretion of 5-hydroxytryptamine and the production of thromboxane B2 by washed platelets exposed to collagen or thrombin. In addition, La3+ inhibited secretion in response to sodium arachidonate, although the conversion of arachidonate to thromboxane B2 was not affected.La3+ was also found to enhance the accumulation of cyclic AMP under basal conditions and in response to prostaglandin E1, in washed platelets. The inhibition of cyclic AMP accumulation by ADP was prevented by La3+, suggesting that the effect of ADP on cyclic AMP metabolism was dependent upon the presence or flux of calcium at the platelet membrane.La3+ inhibited the activity of adenylate cyclase in platelet lysates both in response to prostaglandin E1 and to F?, indicating a possible effect at the catalytic subunit of the enzyme. None of the observed effects of La3+ could be reversed by the addition of Ca2+ up to 10 mM. The stimulation of cyclic AMP production by La3+ may largely explain the inhibitory effect of La3+ upon platelet secretion and thromboxane B2 production. These results also suggest that Ca2+ localised at the platelet plasma membrane may be important in the regulation of cyclic AMP metabolism.  相似文献   

12.
Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 –loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM) and absence of extracellular Ca2+ ([Ca2+]e). Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ΔF/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ΔF/F0 in 0 mM [Ca2+]e were ~5–10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ΔF/F0 transients in 0 mM [Ca2+]e were slower than those of ΔF/F0 transients evoked in 2 mM [Ca2+]e. Rises in ΔF/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3) receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx.  相似文献   

13.
We have recently shown that mitochondrial and plasma-membrane fractions from kidney medulla possess Ca2+-stimulated acylhydrolase and prostaglandin synthase activities. The nature of the enzymic coupling between the Ca2+-stimulated arachidonic acid release and its subsequent conversion into prostaglandins was investigated in subcellular fractions from rabbit kidney medulla. Plasma-membrane, mitochondrial and microsomal fractions were found to have similar apparent Km values for conversion of added exogenous arachidonate into prostaglandins. The rate of prostaglandin biosynthesis (Vmax.) from added arachidonic acid in the microsomal fraction was approx. 2-fold higher than in the other subcellular fractions. In contrast, prostaglandin E2 synthesis from endogenous arachidonate in plasma-membrane and mitochondrial fractions was 3–4-fold higher than in microsomes. Furthermore, Ca2+ stimulated endogenous arachidonate deacylation and prostaglandin E2 generation in the former two fractions but not in microsomes. In mitochondrial or crude plasma-membrane fractions, in which prostaglandin biosynthesis was inhibited with aspirin, arachidonate released from these fractions was converted into prostaglandins by the microsomal prostaglandin synthase. Thus an intracellular prostaglandin generation process that involves inter-fraction transfer of arachidonic acid can operate. Prostaglandin generation by such an inter-fraction process is, however, less efficient than by an intra-fraction process, where arachidonic acid released by mitochondria or crude plasma membranes is converted into prostaglandins by prostaglandin synthase present in the same fraction. This demonstrates the presence of a tight intra-fraction enzymic coupling between Ca2+-stimulated acylhydrolase and prostaglandin synthase enzyme systems in both mitochondrial and plasma-membrane fractions.  相似文献   

14.
The effects of prostaglandin (PG) E1, E2, A1, F, F or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AM systems were examined. While high concentrations (8X10−4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10−7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10−4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

15.
The effect of prostaglandin analogues on the cycle AMP level in cultured chondrocytes were examined. Prostaglandin E1 at 0.4 to 30 μM, increased the intracellular concentration of cyclic AMP in chondrocytes. Its effect was rapid, being evident within 1 min and reaching a maximum in 10 to 20 min. The maximum level was sustained until 30 min after its addition and then decreased gradually. Prostaglandin D2 and E2 also increased the cyclic AMP level in chondrocytes, but they had less effect than prostaglandin E1. Prostaglandin A1 had no effect on the nucleotide level in chondrocytes, although they markedly increased the level in fibroblasts. The time course of stimulation of cyclic AMP accumulation in chondrocytes by prostaglandin E1, D2 or E2 was quite different from that by parathyroid hormone (PTH): the effect of prostaglandin was slower and more sustained than that of PTH. PTH potentiated the effect of prostaglandin E1, E2, or D2 on the cyclic AMP level in chondrocytes and that the combined effects of prostaglandin, PTH or both produced a synergistic effect on the accumulation of cyclic AMP in the chondrocytes. These findings suggest that prostaglandin E1, E2, and D2 increase the synthesis of cyclic AMP and that the combined effect of the prostaglandins and PTH on the cyclic AMP level in chondrocytes is partly attributed to the synergistic synthesis of cyclic AMP in the cells.  相似文献   

16.
Dimethyl sulfoxide (DMSO) initiates a coordinated differentiation program in various cell types but the mechanism(s) by which DMSO does this is not understood. In this study, the effect of DMSO on intracellular calcium ion concentration ([Ca2+]i) was determined in primary cultures of chicken ovarian granulosa cells from the two largest preovulatory follicles of laying hens, and in three cell lines: undifferentiated P19 embryonal carcinoma cells, 3T3-L1 fibroblasts, and Friend murine erythroleukemia (MEL) cells. [Ca2+]i was measured in cells loaded with the Ca2+ -specific fluoroprobe Fura-2. There was an immediate (i.e., within 5 sec), transient, two to sixfold increase in [Ca2+]i after exposing all cell types to 1% DMSO. DMSO was effective between 0.2 and 1%. The prompt DMSO-induced [Ca2+]i spike in all of the cell types was not prevented by incubating the cells in Ca2+ -free medium containing 2 mM EGTA or by pretreating them with the Ca2+-channel blockers methoxyverapamil (D600; 100 μM), nifedipine (20 μM), or cobalt (5 mM). However, when granulosa cells, 3T3-L1 cells, or MEL cells were pretreated with lanthanum (La3+; 1 mM), which blocks both Ca2+ channels and membrane Ca2+ pumps, there was a sustained increase in [Ca2+]i in response to 1% DMSO. By contrast, pretreating P19 cells with La3+ (1 mM) did not prolong the DMSO-triggered [Ca2+]i transient. In all cases, the DMSO-induced [Ca2+]i surge was unaffected by pretreating the cells with the inhibitors of inositol phospholipid hydrolysis, neomycin (1.5 mM) or U-73, 122 (2.5 μM). These results suggest that DMSO almost instantaneously triggers the release of Ca2+ from intracellular stores through a common mechanism in cells in primary cultures and in cells of a variety of established lines, but, this release is not mediated through phosphoinositide breakdown. This large, DMSO-induced Ca2+ spike may play a role in the induction of cell differentiation by DMSO. © 1993 Wiley-Liss, Inc.  相似文献   

17.
The effect of the putative transmitter, l-glutamate, on free intracellular Ca2+, tension and membrane potential in single muscle fibres from the barnacle Balanus nubilus has been investigated. External application of l-glutamate (0.1–10 mM) resulted in a transient increase in free intracellular Ca2+, monitored by the Ca2+-activated protein aequorin. This increase in free intracellular Ca2+ was associated with membrane depolarization and force development, and was followed by a period of ‘desensitization’ in which the preparation was unresponsive to l-glutamate. This could be reversed by removing l-glutamate from the external saline. External application of a number of closely related compounds, including d-glutamate and l-aspartate, were ineffective for initiating the transient light response. The l-glutamate response was virtually abolished in Na-free (Li) medium and completely abolished in Ca-free (Na) medium. The responses to l-glutamate were not reduced in Mg-free medium. The fibre's response to 1 mM l-glutamate was also inhibited by D-600 (10 μM) or by La3+ (1 mM), suggesting that Ca was directly involved in the underlying ionic conductance changes brought about by this putative excitatory transmitter.  相似文献   

18.
In isolated synaptosomes from rat brain, 100 M antimycin A and 10 M oxamic acid inhibit the32Pi-labeling of phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylinositol-4-phosphate (PIP) by 90% and 95–99% respectively. 10 mM sodium fluoride inhibits the labeling by 50–60% and 10 mM A23187 inhibits the labeling by 63–70%. Phospholipase A2 inhibits the labeling of PIP2 and PIP by 93–94% and stimulates their degradation by 84–92%. Depolarization of synaptosomes with 75 mM K+ or 100 M veratrine decreases the labeling of PIP2 and PIP by 66–74%. The decreased labeling results in large part from the Ca2+-dependent degradation of32P-labeled PIP2 and PIP as shown by pulse-chase experiments in which PIP2 and PIP were prelabeled with32Pi. Depolarization of synaptosomes results in the stimulation of45Ca2+ uptake with the concomitant hydrolysis of PIP and PIP2. Addition of 1 mM Ca2+ accounts for 25% of the enhanced degradation whereas depolarization with 75 mM K+ accounts for 75% of the enhanced degradation of PIP2 and PIP. Depolarization with 100 mM veratrine results in a 223% increase in inositol trisphosphate as evidenced by stimulation of45Ca2+ uptake. EGTA (10mM) and Mg2+ (5–10 mM) inhibit the degradation of PIP and PIP2 and counteract the action of 1 mM Ca2+. Our data demonstrate that45Ca2+, Mg2+, and membrane depolarization play an important role in the turnover of membrane phosphatidylinositols.Abbreviations ATP adenosine triphosphate - Pi inorganic orthophosphate - PIP phosphatidylinositol-4-phosphate - PIP2 phosphatidylinositol-4,5,-bisphosphate - IP3 inositol-1,4,5-trisphosphate  相似文献   

19.
Synthetic Ca2+ indicators are widely used to report changes in free [Ca2+], usually in the cytosol but also within organelles. Mag-Fluo-4, loaded into the endoplasmic reticulum (ER) by incubating cells with Mag-Fluo-4 AM, has been used to measure changes in free [Ca2+] within the ER, where the free [Ca2+] is estimated to be between 100 μM and 1 mM. Many results are consistent with Mag-Fluo-4 reliably reporting changes in free [Ca2+] within the ER, but the results are difficult to reconcile with the affinity of Mag-Fluo-4 for Ca2+ measured in vitro (KDCa ∼22 μM). Using an antibody to quench the fluorescence of indicator that leaked from the ER, we established that the affinity of Mag-Fluo-4 within the ER is much lower (KDCa ∼1 mM) than that measured in vitro. We show that partially de-esterified Mag-Fluo-4 has reduced affinity for Ca2+, suggesting that incomplete de-esterification of Mag-Fluo-4 AM within the ER provides indicators with affinities for Ca2+ that are both appropriate for the ER lumen and capable of reporting a wide range of free [Ca2+].  相似文献   

20.
—Some basic kinetic properties of adenylate cyclase in cell free preparations of mouse neuroblastoma were investigated. Production of cAMP from ATP by the enzyme requires the presence of either Mg2+ or Mn2+ in addition to ATP. In the presence of Mg2+, the Km for ATP is 120 ± 15 μM and the interaction of ATP and adenylate cyclase appears to be non-cooperative (Hill coefficient of 1). Magnesium ion concentrations in excess of the ATP concentration cause stimulation although similar excess concentrations of Mn2+ cause inhibition. Prostaglandin E1 and 2-chloroadenosine activate the enzyme. The Km of the cyclase for 2-chloroadenosine is 6 μm . Activation by 2-chloroadenosine leads to an increase in Vmax but does not effect the Km for ATP. At a fixed ATP concentration, the extent of activation caused by prostaglandin E1 and 2-chloroadenosine is inversely related to the Mg2+ concentration. Calcium ion causes inhibition of adenylate cyclase from 0.1 to 4mM with a Ki of 5 ± 10?4m . Ca2+ interaction with the enzyme in the absence or presence of either 2-chloroadenosine or prostaglandin E1 appears cooperative (i.e. Hill coefficients of ?2). Ca2+ inhibition is non-competitive with respect to either ATP or 2-chloroadenosine but is progressively diminished by increasing Mn2+ concentrations. Divalent cation effects and activation by 2-chloroadenosine and prostaglandin E1 of the neuroblastoma adenylate cyclase are compared with ion effects and hormone activation of the enzyme obtained from non-neuronal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号