首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amount of alkaline phosphatase activity per μg of DNA in the urothelium (transitional epithelium) of the rat urinary bladder, organ-cultured in chemically-defined serum-free medium, decreased greater than 70% during a 13 day culture period. This decrease in enzyme activity corresponded inversely with the increase in cell number in the urothelium indicating that enzyme synthesis did not accompany growth. Alkaline phosphatase activity was increased back to values approaching normal enzyme levels during a 3 day culture period by the addition of 10 μM retinoic acid. Retinol also increased enzyme activity but it was only half as effective as retinoic acid. A significant increase in enzyme activity was initiated by 1 μM retinoic acid, however the most effective concentration was at 10 μM.  相似文献   

2.
We have examined the ability of dexamethasone, retinoic acid, and vitamin D3 to induce osteogenic differentiation in rat marrow stromal cell cultures by measuring the expression of mRNAs associated with the differentiated osteoblast phenotype as well as analyzing collagen secretion and alkaline phosphatase activity. Marrow cells were cultured for 8 days in primary culture and 8 days in secondary culture, with and without 10 nM dexamethasone or 1 microM retinoic acid. Under all conditions, cultures produced high levels of osteonectin mRNA. Cells grown with dexamethasone in both primary and secondary culture contained elevated alkaline phosphatase mRNA and significant amounts of type I collagen and osteopontin mRNA. Addition of 1,25-dihydroxyvitamin D3 to these dexamethasone-treated cultures induced expression of osteocalcin mRNA and increased osteopontin mRNA. The levels of alkaline phosphatase, osteopontin, and osteocalcin mRNAs in Dex/Dex/VitD3 cultures were comparable to those of 1,25-dihydroxyvitamin D3-treated ROS 17/2.8 osteosarcoma cells. Omitting dexamethasone from either primary or secondary culture resulted in significantly less alkaline phosphatase mRNA, little osteopontin mRNA, and no osteocalcin mRNA. Retinoic acid increased alkaline phosphatase activity to a greater extent than did dexamethasone but did not have a parallel effect on the expression of alkaline phosphatase mRNA and induced neither osteopontin or osteocalcin mRNAs. In all conditions, marrow stromal cells synthesized and secreted a mixture of type I and III collagens. However, dexamethasone-treated cells also synthesized an additional collagen type, provisionally identified as type V. The synthesis and secretion of collagens type I and III was decreased by both dexamethasone and retinoic acid. Neither dexamethasone nor retinoic acid induced mRNAs associated with the chondrogenic phenotype. We conclude that dexamethasone, but not retinoic acid, promotes the expression of markers of the osteoblast phenotype in cultures of rat marrow stromal fibroblasts.  相似文献   

3.
High-dose retinoic acid modulates rat calvarial osteoblast biology   总被引:3,自引:0,他引:3  
Retinoic acid has been shown to adversely affect craniofacial development. Cleft palate and craniosynostosis are two examples of craniofacial defects associated with prenatal exposure to this agent. Although the effects of retinoic acid on cephalic neural crest-derived tissues have previously been studied, the specific effects of retinoic acid on the cellular biology of osteoblasts remain unclear. The purpose of this study was to analyze in detail the effects of pharmacologic doses of retinoic acid on the differentiation and proliferation of osteoblasts derived from an intramembranous source. Primary rat calvarial osteoblasts were established in culture and treated with 1 or 10 microM all-trans-retinoic acid. Retinoic acid treatment markedly increased expression of osteopontin up to 48 h after stimulation. Consistent with this early stage of differentiation, both mRNA and protein analysis of FGF receptor isoforms demonstrated a switch in predominance from fibroblast growth factor receptor 2 (fgfr2) to fgfr1. Analysis of PCNA protein confirmed inhibition of proliferation by retinoic acid. To determine whether these alterations in osteoblast biology would lead to increased differentiation, we examined short term [alkaline phosphatase (AP) activity] and long term (von Kossa staining) surrogates of bone formation in vitro. These assays confirmed that retinoic acid increased osteogenesis, with a 4-fold increase in bone nodule formation in cells treated with 10 microM retinoic acid after 28 days. Overall, our results demonstrated that pharmacologic doses of all-trans-retinoic acid decreased osteoblast proliferation and increased differentiation, suggesting that retinoic acid may effect craniofacial development by pathologically enhancing osteogenesis.  相似文献   

4.
5.
6.
We examined whether chemical agents reported to induce differentiation of leukemic cells also have differentiating effects on normal human granulocytes using alkaline phosphatase activity as a marker. Among 11 compounds examined, only vitamin A analogues were shown to induce this activity in granulocytes from bone marrow of normal individuals. Retinoic acid was the most potent inducer of the activity followed by retinal, whereas retinol and retinol acetate did not induce any activity. The effect on the alkaline phosphatase activity by retinoic acid and retinal was considered to reflect their effect on normal granulocytic differentiation and maturation.  相似文献   

7.
Specific assays, based on gas chromatography-mass spectrometry and high-performance liquid chromatography, were used to quantify the conversion of retinol and retinal into retinoic acid by the pig kidney cell line LLC-PK1. Retinoic acid synthesis was linear for 2-4 h as well as with graded amounts of either substrate to at least 50 microM. Retinoic acid concentrations increased through 6-8 h, but decreased thereafter because of substrate depletion (t1/2 of retinol = 13 h) and product metabolism (1/2 = 2.3 h). Retinoic acid metabolism was accelerated by treating cells with 100 nM retinoic acid for 10 h (t1/2 = 1.7 h) and was inhibited by the antimycotic imidazole ketoconazole. Feedback inhibition was not indicated since retinoic acid up to 100 nM did not inhibit its own synthesis. Retinol dehydrogenation was rate-limiting. The reduction and dehydrogenation of retinal were 4-8-fold and 30-60-fold faster, respectively. Greater than 95% of retinol was converted into metabolites other than retinoic acid, whereas the major metabolite of retinal was retinoic acid. The synthetic retinoid 13-cis-N-ethylretinamide inhibited retinoic acid synthesis, but 4-hydroxylphenylretinamide did not. 4'-(9-Acridinylamino)methanesulfon-m-anisidide, an inhibitor of aldehyde oxidase, and ethanol did not inhibit retinoic acid synthesis. 4-Methylpyrazole was a weak inhibitor: disulfiram was a potent inhibitor. These data indicate that retinol dehydrogenase is a sulfhydryl group-dependent enzyme, distinct from ethanol dehydrogenase. Homogenates of LLC-PK1 cells converted retinol into retinoic acid and retinyl palmitate and hydrolyzed retinyl palmitate. This report suggests that substrate availability, relative to enzyme activity/amount, is a primary determinant of the rate of retinoic acid synthesis, identifies inhibitors of retinoic acid synthesis, and places retinoic acid synthesis into perspective with several other known pathways of retinoid metabolism.  相似文献   

8.
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 μM), and dihydrocytochalasin B (3, 10, 20 μM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid‐treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15–20‐fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 μM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two‐dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two‐dimensional gel electrophoresis along the study. J. Cell. Biochem. 76:84–98, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
Treatment of mammalian cells in culture with retinoic acid causes a time- and concentration-dependent increase of the specific activity of alkaline phosphatase. The increase reaches a factor of 15 and more and begins at a concentration of 10(-8)M retinoic acid. The induction is inhibited by cycloheximide or actinomycin D. The same isoenzyme of alkaline phosphatase is expressed in control and in retinoic acid-treated cells as demonstrated by the inhibitions by amino acids and peptides. The enzyme induction occurs in rat heart, skeletal muscle, brain, lung cells and HeLa cells. No induction was found in two lines of human melanoma cells. After treatment of cells with tunicamycin, the induction of alkaline phosphatase is detectable only in the homogenate and no longer detectable by histochemical methods. This shows that the glycosylation of the protein is an important step in the insertion of this enzyme into the plasma membrane.  相似文献   

10.
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 microM), and dihydrocytochalasin B (3, 10, 20 microM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid-treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15-20-fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 microM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two-dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two-dimensional gel electrophoresis along the study.  相似文献   

11.
To examine the role of protein kinase A (EC 2.7.1.37) isozymes in the retinoic acid-induced growth inhibition and neuronal differentiation, we investigated the changes of protein kinase A isozyme patterns in retinoic acid-treated SH-SY5Y human neuroblastoma cells. Retinoic acid induced growth inhibition and neuronal differentiation of SH-SY5Y cells in a dose- and time-dependent manner. Neuronal differentiation was evidenced by extensive neurite outgrowth, decrease of N-Myc oncoprotein, and increase of GAP-43 mRNA. Type II protein kinase A activity increased by 1.5-fold in differentiated SH-SY5Y cells by retinoic acid treatment. The increase of type II protein kinase A was due to the increase of RIIbeta and Calpha subunits. Since type II protein kinase A and RIIbeta have been known to play important role(s) in the growth inhibition and differentiation of cancer cells, we further investigated the role of the increased type II protein kinase A by overexpressing RIIbeta in SH-SY5Y cells. The growth of RIIbeta-overexpressing cells was slower than that of parental cells, being comparable to that of retinoic acid-treated cells. Retinoic acid treatment further increased the RIIbeta level and further inhibited the growth of RIIbeta-overexpressing cells, showing strong correlation between the level of RIIbeta and growth inhibition. However, RIIbeta-overexpressing cells did not show any sign of neuronal differentiation and responded to retinoic acid in the same way as parental cells. These data suggest that protein kinase A participates in the retinoic acid-induced growth inhibition through the up-regulation of RIIbeta/type II protein kinase A.  相似文献   

12.
The thyroid hormones thyroxine (T4) and 3,3',5-L-triiodothyronine (T3) stimulate plasma membrane Ca2+-ATPase (EC 3.6.1.3) activity in human erythrocytes by a mechanism independent of the cell nucleus. The current studies were conducted to determine the effect of retinoic acid on the extranuclear activation by T4 and T3 of Ca2+-ATPase in the human red cell. The retinoid inhibited basal and T4-stimulatable activity of that enzyme in a dose-dependent manner. At the highest tested concentration (10(-6) M), retinoic acid inhibited basal enzyme activity by 25% and T4-stimulated activity by 72%. A concentration as low as 5 x 10(-10) M retinoic acid shifted the dose-response curve of both T4 and T3 so that the concentration of each associated with maximal enzyme stimulation was 10(-9) M instead of 10(-10) M. Retinoic acid displaced [125I]T4 binding to red cell membranes as effectively as unlabeled T4. Retinol failed to influence either basal or T4-stimulated enzyme activity or to displace T4 binding. These results indicate that retinoic acid can partially block the T4 and T3 stimulation of Ca2+-ATPase in human red cell membranes and suggest a physiologic role for the retinoid as a modulator of this peripheral action of thyroid hormone. They suggest that the red cell membrane is an important site of action for this active retinoid.  相似文献   

13.
In this study the effects of retinoic acid on the binding and mitogenic activity of epidermal growth factor (EGF) in mouse fibroblast Balb/c 3T6 cells are further examined. Retinoic acid treatment of 3T6 cells results in a sixfold enhancement of 125I-labeled mouse EGF binding when assayed at 37 degrees C. In both retinoic acid-treated and control cells, cell-associated 125I-EGF is rapidly internalized, degraded, and secreted. Retinoic acid treatment does not seem to have a significant effect on the rate of internalization and degradation of EGF. At 0 degrees C, internalization of EGF is strongly inhibited in both retinoic acid-treated and control cells. Under these conditions retinoic acid-treated cells still exhibit a tenfold higher level of EGF binding compared to control cells. When exposed to high concentrations of EGF both retinoic acid-treated and control cells "down-regulate" their EGF receptors. And although the growth rate of retinoic acid-treated cells is about half that of control cells, the rate at which EGF binding capacity is restored after down-regulation is about three times as fast as in control cells. No direct antagonism on EGF binding was observed between the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and retinoic acid. EGF is a potent mitogen for 3T6 cells in serum-free medium; retinoic acid inhibits the mitogenic activity of EGF even though it increases EGF binding. Retinoic acid also inhibits cell proliferation induced by sarcoma growth factor (SGF) and insulin.  相似文献   

14.
Forskolin(FSK)是一种植物二萜类化合物,为腺苷酸环化酶的特异激活剂,实验发现:FSK和作为参照的诱导分化剂维甲酸(RA)单独或联合应用均可升高胞浆蛋白激酶C(PKC)活性,并降低膜PKC活性,FSK可使表皮生长因子(EGF)诱导的细胞内三磷酸肌醇(IP3-1,4,5)水平降低至对照组的44.4%至67%;FSK与RA合用可显著降低成骨样细胞特征蛋白碱性磷酸酶(AKP)的活性。以上结果表明,FSK对成骨样细胞内磷脂酰肌醇信息传递体系有深刻影响,可能与其调节细胞的增殖分化有关。  相似文献   

15.
The mechanisms by which topically applied retinoic acid to mouse skin inhibits tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced epidermal ornithine decarboxylase activity were analyzed. Retinoic acid inhibition of the induction of epidermal ornithine decarboxylic activity was not the result of nonspecific cytotoxicity, production of a soluble inhibitor of ornithine decarboxylase, or direct effect on its activity. In addition, inhibition of TPA-caused increased ornithine decarboxylase activity does not appear to be due to enhanced degradation and/or post-translational modification of ornithine decarboxylase by transglutaminase-mediated putrescine incorporation. We found that retinoic acid inhibits the synthesis of ornithine decarboxylase caused by TPA. Application of 10 nmol TPA to mouse skin led to a dramatic induction of epidermal ornithine decarboxylase activity which was paralled by increased [3H]difluoromethylornithine binding and an increased incorporation of [35S]methionine into the enzyme. Application of 17 nmol retinoic acid 1 h prior to application of 10 nmol TPA to skin resulted in inhibition of the induction of activity which accompanied inhibition of [3H]difluoromethylornithine binding and [35S]methionine incorporation into ornithine decarboxylase protein as determined by the tube-gel electrophoresis of the enzyme immunoprecipitated with monoclonal antibodies to it. Inhibition of ornithine decarboxylase synthesis was not the result of the inhibitory effect of retinoic acid on general protein synthesis. The results indicate that retinoic acid possibly inhibits TPA-caused synthesis of ornithine decarboxylase protein selectively.  相似文献   

16.
The effect of retinoic acid on the induction of tyrosinase (EC 1:14.18.1) by imidazole was determined in cultured B16/C3 melanoma cells. Retinoic acid could block the induction of enzyme activity within 3 hours of addition to the culture medium at a physiological concentration (10nM). The blockade was similar to that of 3,3',5-L-triiodothyronine (T3) already reported. mRNA hybridizable to a tyrosinase DNA probe was induced by imidazole while retinoic acid and T3 blocked that increase. These observations suggest that retinoic acid can mimic the action of T3 in B16 melanoma cells in culture.  相似文献   

17.
All-trans retinoic acid can specifically increase receptor mediated intoxication of ricin A chain immunotoxins more than 10,000 times, whereas fluid phase endocytosis of ricin A chain alone or ricin A chain immunotoxins was not influenced by retinoic acid. The immunotoxin activation by retinoic acid does not require RNA or protein synthesis and is not a consequence of increased receptor binding of the immunotoxin. Vitamin D3 and thyroid hormone T3, that activate retinoic acid receptor (RAR) cognates, forming heterodimers with retinoid X receptor (RXR), do not affect the potency of immunotoxins. Among other retinoids tested, 13-cis retinoic acid, which binds neither RAR nor RXR, also increases the potency of the ricin A chain immunotoxin. Therefore, retinoic acid receptor activation does not appear to be necessary for immunotoxin activity. Retinoic acid potentiation of immunotoxins is prevented by brefeldin A (BFA) indicating that in the presence of retinoic acid, the immunotoxin is efficiently routed through the Golgi apparatus en route to the cytoplasm. Directly examining cells with a monoclonal antibody (Mab) against mannosidase II, a Golgi apparatus marker enzyme, demonstrates that the Golgi apparatus changes upon treatment with retinoic acid from a perinuclear network to a diffuse aggregate. Within 60 min after removal of retinoic acid the cell reassembles the perinuclear Golgi network indistinguishable with that of normal control cells. C6-NBD-ceramide, a vital stain for the Golgi apparatus, shows that retinoic acid prevents the fluorescent staining of the Golgi apparatus and eliminates fluorescence of C6-NBD-ceramide prestained Golgi apparatus. Electron microscopy of retinoic acid-treated cells demonstrates the specific absence of any normal looking Golgi apparatus and a perinuclear vacuolar structure very similar to that seen in monensin-treated cells. This vacuolization disappears after removal of the retinoic acid and a perinuclear Golgi stacking reappears. These results indicate that retinoic acid alters intracellular routing, probably through the Golgi apparatus, potentiating immunotoxin activity indepedently of new gene expression. Retinoic acid appears to be a new reagent to manipulate the Golgi apparatus and intracellular traffic. As retinoic acid and immunotoxins are both in clinical trials for cancer therapy, their combined activity in vivo would be interesting to examine.  相似文献   

18.
1. Acid and alkaline phosphatase activities were studied in rat and dog aortic muscle using p-nitrophenyl phosphate (p-NPP) as the substrate. Alkaline phosphatase activity was quite comparable to acid phosphatase activity in rat aortic microsomes as well as further purified plasma membranes, but considerably lower than acid phosphatase activity in dog aortic membranes. 2. Subcellular distribution of acid and alkaline phosphatase activities in these vascular muscles indicated that alkaline phosphatases and a large portion of acid phosphatase activities were primarily associated with plasma membranes and the distribution of acid phosphatase showed little resemblance to that of N-acetyl-beta-glucosaminidase, a lysosomal marker enzyme. 3. The rat aortic plasmalemmal acid and alkaline phosphatase activities responded very differently to magnesium, fluoride, vanadate and EDTA. The alkaline phosphatase was more susceptible to heat inactivation than acid phosphatase. 4. These results suggest that these two phosphatases are likely to be two different enzymes in the smooth muscle plasma membranes. The implication of the present findings is discussed in relation to the alteration of these phosphatases in hypertensive vascular diseases.  相似文献   

19.
1. The biochemical development and histochemical localisation of phosphomonoesterases in the testes of prepuberal chicks have been studied. 2. Maximum acid phosphatase activity was observed at 12 weeks with a decrease in enzyme activity after this age, whereas alkaline phosphatase activity fluctuated with age. 3. Acid phosphatase activity in chicks was similar to that of the cockerel in being tartarate-insensitive. 4. There was a low level of significant correlation between acid phosphatase activity and testes weight. 5. Both alkaline and acid phosphatase activities were observed in the basement membrane of the seminiferous tubules, and acid phosphatase activity also in the various spermatogenic elements. 6. The results suggest that acid phosphatase is more involved in spermatogenesis, and more widely distributed than alkaline phosphatase in testicular tissue during testicular development.  相似文献   

20.
Alkaline phosphatese activity of HeLa cells is increased from 3- to 8-fold during growth in medium with certain aliphatic monocarboxylates. The four-carbon fatty acid salt, sodium butyrate, is the most effective “inducer” with propionate (C3), pentanoate (C5) and hexanoate (C6) having lesser effects. Other straight-chain aliphatic monocarboxylates, branched-chain analogues of inducers, hydroxylated derivatives, and metabolytes structurally related to butyrate are ineffective in mediating an increase in enzyme activity, indicating stringent structural requirements for inducers. The kinetics of increase in alkaline phosphatase activity in HeLa cells shows a 20–30 h lag period after adding the aliphatic acid followed by a rapid linear increase of enzyme activity. Protein synthesis is required for “induction”. The isozyme of HeLa alkaline phosphatase induced by monocarboxylates is the carcinoplacental form of the enzyme as determined by stereospecific inhibition by the l-enantiomorphs of phenylalanine and tryptophan, heat stability, and immunoreactivity with antibody against the human placental enzyme.Monocarboxylates that mediate increased alkaline phosphatase activity inhibit HeLa cell multiplication. Inhibition of HeLa cell growth may be necessary for induction and this hypothesis is supported by the findings that three different inhibitors of DNA synthesis, i.e. hydroxyurea, 1-β-d-arabinfuranosyl cytosine and methotrexate, also increase alkaline phosphatase activity. These inhibitors are synergistic with butyrate in causing HeLa cells to assume a more spindle-like shape and in producing an up-to 25-fold increase of enzyme activity. Studies on the modulation of carcinoplacental alkaline phosphatase by monocarboxylates commonly used as antimicrobial food additives and by anti-neoplastic agents may provide methods to evoke “tumor markers” of human occult malignancies. These drug-induced elevations of fetal isozyme activity may further our understanding of gene expression in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号