首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new enzymatic activation system for the covalent binding of a mutagenic metabolite of a tryptophan pyrolysate, N-hydroxy-Trp-P-2, is described. The system exists in hepatic cytosolic fraction of rats, requiring ATP and some amino acids as the cofactor. Proline was the most effective among amino acids examined. These results suggest that N-hydroxy-Trp-P-2 formed by microsomal cytochrome P-450 is activated by prolyl-tRNA synthetase or related enzyme(s). Possible roles of sulfation and acetylation in the formation of the covalent adducts were also discussed.  相似文献   

2.
3.
4.
5.
The ability of aminoacyl-tRNA synthetases to distinguish between similar amino acids is crucial for accurate translation of the genetic code. Saccharomyces cerevisiae seryl-tRNA synthetase (SerRS) employs tRNA-dependent recognition of its cognate amino acid serine [Lenhard, B., Filipic, S., Landeka, I., Skrtic, I., S?ll, D. & Weygand-Durasevic, I. (1997) J. Biol. Chem.272, 1136-1141]. Here we show that dimeric SerRS enzyme complexed with one molecule of tRNASer is more specific and more efficient in catalyzing seryl-adenylate formation than the apoenzyme alone. Sequence-specific tRNA-protein interactions enhance discrimination of the amino acid substrate by yeast SerRS and diminish the misactivation of the structurally similar noncognate threonine. This may proceed via a tRNA-induced conformational change in the enzyme's active site. The 3'-terminal adenosine of tRNASer is not important in effecting the rearrangement of the serine binding site. Our results do not provide an indication for a readjustment of ATP binding in a tRNA-assisted manner. The stoichiometric analyses of the complexes between the enzyme and tRNASer revealed that two cognate tRNA molecules can be bound to dimeric SerRS, however, with very different affinities.  相似文献   

6.
Aminoacyl-tRNA synthetases (AARSs) play a critical role in translation and are thus required in three plant protein-synthesizing compartments: cytosol, mitochondria and plastids. A systematic study had previously shown extensive sharing of organellar AARSs from Arabidopsis thaliana, mostly between mitochondria and chloroplasts. However, distribution of AARSs from monocot species, such as maize, has never been experimentally investigated. Here we demonstrate dual targeting of maize seryl-tRNA synthetase, SerZMo, into both mitochondria and chloroplasts using combination of complementary methods, including in vitro import assay, transient expression analysis of green fluorescent protein (GFP) fusions and immunodetection. We also show that SerZMo dual localization is established by the virtue of an ambiguous targeting peptide. Full-length SerZMo protein fused to GFP is targeted to chloroplast stromules, indicating that SerZMo protein performs its function in plastid stroma. The deletion mutant lacking N-terminal region of the ambiguous SerZMo targeting peptide was neither targeted into mitochondria nor chloroplasts, indicating the importance of this region in both mitochondrial and chloroplastic import.  相似文献   

7.
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.  相似文献   

8.
Purification and properties of seryl-tRNA synthetase from hen's liver   总被引:1,自引:0,他引:1  
M A Le Meur  P Gerlinger  J Clavert  J P Ebel 《Biochimie》1972,54(11):1391-1397
  相似文献   

9.
10.
11.
12.
13.
14.
The secondary structures of metazoan mitochondrial (mt) tRNAs(Ser) deviate markedly from the paradigm of the canonical cloverleaf structure; particularly, tRNA(Ser)(GCU) corresponding to the AGY codon (Y=U and C) is highly truncated and intrinsically missing the entire dihydrouridine arm. None of the mt serine isoacceptors possesses the elongated variable arm, which is the universal landmark for recognition by seryl-tRNA synthetase (SerRS). Here, we report the crystal structure of mammalian mt SerRS from Bos taurus in complex with seryl adenylate at an atomic resolution of 1.65 A. Coupling structural information with a tRNA-docking model and the mutagenesis studies, we have unraveled the key elements that establish tRNA binding specificity, differ from all other known bacterial and eukaryotic systems, are the characteristic extensions in both extremities, as well as a few basic residues residing in the amino-terminal helical arm of mt SerRS. Our data further uncover an unprecedented mechanism of a dual-mode recognition employed to discriminate two distinct 'bizarre' mt tRNAs(Ser) by alternative combination of interaction sites.  相似文献   

15.
Crystals of seryl-tRNA synthetase from Escherichia coli can be grown from ammonium sulphate/octyl glucoside solutions in two days. The crystals appear to be very suitable for X-ray analysis, diffracting to at least 2.8 A resolution and being resistant to radiation damage. The crystals are monoclinic (space group C2) with cell parameters a = 148.2 A, b = 90.6 A, c = 69.5 A and beta = 119.0 degrees. Depending on whether the asymmetric unit is the enzyme monomer (Mr 48,414) or dimer the Vm value would be either 4.12 or 2.10 A3/dalton. Although the former would indicate a rather high solvent content, other proteins crystallized in the presence of octyl glucoside have Vm values similar to this.  相似文献   

16.
Yeast tRNA(Ser) is a member of the class II tRNAs, whose characteristic is the presence of an extended variable loop. This additional structural feature raises questions about the recognition of these class II tRNAs by their cognate synthetase and the possibility of the involvement of the extra arm in the recognition process. A footprinting study of yeast tRNA(Ser) complexed with its cognate synthetase, yeast seryl-tRNA synthetase (an alpha 2 dimer), was undertaken. Chemical (ethylnitrosourea) and enzymatic (nucleases S1 and V1) probes were used in the experiments. A map of the contact points between the tRNA and the synthetase was established and results were analyzed with respect to a three-dimensional model of yeast tRNA(Ser). Regions in close vicinity with the synthetase are clustered on one face of tRNA. The extra arm, which is strongly protected from chemical modifications, appears as an essential part of the contact area. The anticodon triplet and a large part of the anticodon arm are, in contrast, still accessible to the probes when the complex is formed. These results are discussed in the context of the recognition of tRNAs in the aminoacylation reaction.  相似文献   

17.
Aminoacyl-tRNA synthetases catalyze the formation of aminoacyl-tRNAs. Seryl-tRNA synthetase is a class II synthetase, which depends on rather few and simple identity elements in tRNA(Ser) to determine the amino acid specificity. tRNA(Ser) acceptor stem microhelices can be aminoacylated with serine, which makes this part of the tRNA a valuable tool for investigating the structural motifs in a tRNA(Ser)-seryl-tRNA synthetase complex. A 1.8A-resolution tRNA(Ser) acceptor stem crystal structure was superimposed to a 2.9A-resolution crystal structure of a tRNA(Ser)-seryl-tRNA synthetase complex for a visualization of the binding environment of the tRNA(Ser) microhelix.  相似文献   

18.
Crystals have been obtained of seryl-tRNA synthetase from the extreme thermophile Thermus thermophilus, using mixed solutions of ammonium sulphate and methane pentane diol. The crystals are very stable and diffract to at least 2 A. The crystals are monoclinic (space group P21) with cell parameters a = 87.1 A, b = 126.9 A, c = 63.5 A and beta = 109.7 degrees.  相似文献   

19.
Seryl-tRNA synthetase is the gene product of the serS locus in Escherichia coli. Its gene has been cloned by complementation of a serS temperature sensitive mutant K28 with an E. coli gene bank DNA. The resulting clones overexpress seryl-tRNA synthetase by a factor greater than 50 and more than 6% of the total cellular protein corresponds to the enzyme. The DNA sequence of the complete coding region and the 5'- and 3' untranslated regions was determined. Protein sequence comparison of SerRS with all available aminoacyl-tRNA synthetase sequences revealed some regions of significant homology particularly with the isoleucyl- and phenylalanyl-tRNA synthetases from E. coli.  相似文献   

20.
Aminoacyl-tRNA synthetases catalyze the formation of an aminoacyl-AMP from an amino acid and ATP, prior to the aminoacyl transfer to tRNA. A subset of aminoacyl-tRNA synthetases, including glutamyl-tRNA synthetase (GluRS), have a regulation mechanism to avoid aminoacyl-AMP formation in the absence of tRNA. In this study, we determined the crystal structure of the 'non-productive' complex of Thermus thermophilus GluRS, ATP and L-glutamate, together with those of the GluRS.ATP, GluRS.tRNA.ATP and GluRS.tRNA.GoA (a glutamyl-AMP analog) complexes. In the absence of tRNA(Glu), ATP is accommodated in a 'non-productive' subsite within the ATP-binding site, so that the ATP alpha-phosphate and the glutamate alpha-carboxyl groups in GluRS. ATP.Glu are too far from each other (6.2 A) to react. In contrast, the ATP-binding mode in GluRS.tRNA. ATP is dramatically different from those in GluRS.ATP.Glu and GluRS.ATP, but corresponds to the AMP moiety binding mode in GluRS.tRNA.GoA (the 'productive' subsite). Therefore, tRNA binding to GluRS switches the ATP-binding mode. The interactions of the three tRNA(Glu) regions with GluRS cause conformational changes around the ATP-binding site, and allow ATP to bind to the 'productive' subsite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号