共查询到20条相似文献,搜索用时 0 毫秒
1.
The proposition that the nitrogen status of a plant is reflected by the ratio pyridoxal phosphate to pyridoxamine phosphate and that this ratio exerts a controlling influence on plant metabolism has been examined. The ratio pyridoxal phosphate to pyridoxamine phosphate has been shown to increase during nitrogen starvation. The inhibition of glutamate dehydrogenase by pyridoxal phosphate has been examined and the kinetics of inhibition are discussed in relation to the proposed control of metabolism. 相似文献
2.
Tadashi Asakura Naoto Takahashi Tae Hirakawa Kiyoshi Ohkawa Nozomu Hibi 《Neurochemical research》1996,21(1):47-50
We investigated the relationship between the concentration of pyridoxal-5′-phosphate (PLP) and biogenic amine in mouse brain.
The production of PLP from pyridoxal (PL) by pyridoxal kinase (PLK) was inhibited by the addition of dopamine (DA), norepinephrine
(NE) and 5-hydroxytryptamine (5-HT), but not by that of epinephrine and N-acetyl-serotonin. DA and NE were combined with PLP
by a non-enzymatic reaction, whereas 5-HT was bound only slightly with PLP. The conjugated product of PLP with DA was also
detected by HPLC analysis when PLK activity was assayed using PL as a substrate in the presence of DA. In an in vivo investigation,
the depletion of DA and 5-HT in mouse brain after an intraperitoneal injection of 5 mg/kg reserpine, led to slight elevation
of the PLP level to 120% of the control level. By contrast, the increase in DA in the brain caused by intraperitoneal administration
of 150 mg/kg L-DOPA caused the PLP concentration to decrease to 70% of the control level. However, no change in PLK activity
in the brain was observed when the mice were treated with either reserpine or L-DOPA. These results suggested that the level
of PLP in mouse brain was partly regulated by the concentration of biogenic amines, such as DA, NE and 5-HT, without apparent
induction of PLK. 相似文献
3.
Summary Stability of Schiff bases from Pyridoxal-5-phosphate and- and non-amino acids and amines have been studied in a wide range of pH. Furthermore the transamination process for the PLP-serine Schiff base and the cyclization reaction of PLP-histidine Schiff base have also been studied.Results show that the-position on carboxyl group of amino acids plays an important role on the mechanism of hydrolysis of imine bond. Absence of ionic groups in the surroundings of that bond seems to be an important fact of stability.In the transamination reaction, the rate-determining step is the isomerization of the Schiff base to ketoimine, since the rate constants for disappearance of Schiff base coincide with the rate constants for PMP formation. This process is catalyzed by the OH–/H2O system and the monoprotonated amino acid. 相似文献
4.
George J. Brewer John C. Gall Merton Honeyman Henry Gershowitz Donald C. Shreffler Raymond J. Dern Curtis Hames 《Biochemical genetics》1967,1(1):41-53
Studies have been conducted on eight sets of monozygous and nine sets of dizygous female Negro twins, both members of whom were heterozygous for G-6-PD deficiency. Twins were studied both by assay of erythrocytic G-6-PD activity and by the methemoglobin elution test (MET). The MET is a procedure which identifies histochemically cells with appreciable G-6-PD activity and permits accurate determination of the percentage of such cells in heterozygotes. Monozygous twins showed significantly less within-pair variation than dizygous twins with both the MET and G-6-PD assay.Concerning the significantly greater agreement in MET results in monozygous twins than dizygous twins, our present working hypothesis is that X-chromosomal inactivation in the Negro female is genetically controlled, rather than random. However, certain alternate hypotheses allowing for random X-inactivation have not been excluded; these include somatic cell selection after random X-inactivation, and cell exchange between identical twins in utero/it. Studies in nontwin related heterozygotes now underway should help differentiate among these various possibilities.In addition to the studies on 17 pairs of female twins heterozygous for G-6-PD deficiency, 26 pairs of nondeficient female Negro twins have been studied by G-6-PD assay. Within-pair variation in monozygous twins was significantly less than within-pair variation in dizygous twins in all cases. The genetic influences detected with the G-6-PD assay in the female twins could theoretically be due to nonrandom X-inactivation, to genetically determined quantitative differences in enzyme activity (e.g., isoalleles), or to both. By appropriate calculations, based on the MET results, we have factored out the effects of X-inactivation on overall enzyme activity in the heterozygous deficient twins. After removal of the effect of X-inactivation, monozygous twins heterozygous for enzyme deficiency continue to show significantly less within-pair variation than dizygous twins. This finding indicates significant genetic influences on quantitative G-6-PD activity other than X-inactivation and other than the deficiency allele. This conclusion has been strengthened by studies on male twins where X-inactivation is not present.Supported by USPHS research grants AM-09381, HE-17544, AM-09919, and HE-03341, by USPHS Career Development Award 1-K3-AM-7959 (Dr. Brewer) and by U.S.A.E.C. Contract (11-1)-1552. 相似文献
5.
Summary After subcutaneous administration of N,N-dimethyl-para-phenylenediamine (DPPD) in rats, a myogenic myopathy was produced in the skeletal muscles. In this communication, the results of the application of various histochemical techniques for the localization of oxidoreductases, transferases, hydrolases and isomerases and biochemical techniques for the estimation of activities of oxidoreductases in the experimental skeletal muscles are presented. The most striking result was the activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase which increased dramatically during the early phase of the muscle disease. The increase in activity of the pentose phosphate shunt enzymes was the first pathological alteration and was present as early as 8 h after a single injection of DPPD. Histochemical techniques for demonstration of activity of both enzymes are therefore highly suited for the detection of minor diseases and the early onset of major diseases of the neuromuscular system. Some glycolytic enzymes as well as some enzymes of the aerobic part of the metabolism showed an early decrease or increase in activity indicating a metabolic imbalance in the muscle fibres. There were more fibres with an intermediate pattern of the energy yielding enzymes in the experimental muscle specimens then in specimens from the control groups. The activity of the catabolic hydrolytic enzymes was strongly increased in pathological muscles. The aerobic muscles were more vulnerable to DPPD than the anaerobic muscles. 相似文献
6.
S.B. Itskan-Forshaid J.C.C. Maia F.G. Nóbrega P.H. Saldanha 《Journal of human evolution》1980,9(7):565-571
Physico-chemical properties of erythrocyte glucose-6-phosphate dehydrogenase including erythrocyte G6PD activity, Michaelis constants, KmG6P and NADP, pH optimum, thermostability and molecular weight were investigated in “brown-howler” monkeys and then compared with the values of human G6PD B(+). The values of Michaelis constants (KmG6P and NADP) pH optimum were the same as the values of human G6PD B(+). The human G6PD has a dimeric form in the assay conditions employed in the present study, monkey enzyme showing great similariy with human one. Otherwise, the thermostability differed from the human G6PD. The simian enzymatic activity was about four times higher than the human G6PD. A comparison of physico-chemical properties of glucose-6-phosphate dehydrogenase among primates is also presented. 相似文献
7.
Summary A 33-year-old Brazilian male of Portuguese extraction was found to have a new glucose-6-phosphate dehydrogenase variant, herein named Gd(+)Cuiabá. The enzyme variant is characterized by normal activity, normal electrophoretic mobility, high Km, for glucose-6-phosphate, high Ki for NADPH, decreased thermal stability, normal utilization of substrate analogues and normal pH curve. 相似文献
8.
《Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology》1997,1337(2):207-216
Incubation of the nonphosphorylated form of maize-leaf phosphoenolpyruvate carboxylase (orthophosphate: oxaloacetate carboxy-lyase (phosphorylating), PEPC, EC 4.1.1.31) with the reagent pyridoxal 5′-phosphate (PLP) resulted in time-dependent, reversible inactivation and desensitization to the activator glucose 6-phosphate (Glc6P) and other related phosphorylated compounds. Both processes are not connected, since (i) when the PLP-modification was carried out in the presence of saturating ligands of the active site, which prevents inactivation, the desensitization to Glc6P is still observed, and (ii) under some experimental conditions the desensitization reaction is 4-times faster than the inactivation. Desensitization to Glc6P is first order with respect to PLP and has a second-order forward rate constant of 4.7±0.3 s−1 M−1 and a first-order reverse rate constant of 0.0046±0.0002 s−1. Correlation studies between the remaining Glc6P sensitivity and mol of PLP residues incorporated per mol of enzyme subunit indicate that one lysyl group for enzyme monomer is involved in the sensitivity of the enzyme to Glc6P. The reactivity of this group is increased by polyethylene glycol and glycerol, while the reactivity of the lysyl group of the active site is not affected by these organic cosolutes. In the presence but not in the absence of the organic cosolutes, Glc6P by itself offers significant protection against desensitization, while increases the extent of inactivation. Free PEP or PEP-Mg have opposite effects, protecting the enzyme against inactivation and increasing the degree of desensitization. They also increases the protection against desensitization afforded by Glc6P. Finally, the PEPC inhibitor malate provides some protection against both inactivation and desensitization. Taken together, these results are consistent with PLP-modification of a highly reactive lysyl group at or near the allosteric Glc6P-site. 相似文献
9.
In the course of characterization of glycolipid sulfotransferase from human renal cancer cells, the manner of inhibition of sulfotransferase activity with pyridoxal 5-phosphate was investigated. Incubation of a partially purified sulfotransferase preparation with pyridoxal 5-phosphate followed by reduction with NaBH4 resulted in an irreversible inactivation of the enzyme. When adenosine 3-phosphate 5-phosphosulfate was co-incubated with pyridoxal 5-phosphate, the enzyme was protected against this inactivation. Furthermore, pyridoxal 5-phosphate was found to behave as a competitive inhibitor with respect to adenosine 3-phosphate 5-phosphosulfate with aK
i value of 287 µm. These results suggest that pyridoxal 5-phosphate modified a lysine residue in the adenosine 3-phosphate 5-phosphosulfate-recognizing site of the sulfotransferase. 相似文献
10.
The carboxylation of the pentapeptide substrate, Phe-Leu-Glu-Glu-Ile, by a rat microsomal vitamin K-dependent carboxylase was stimulated two- to threefold at pyridoxal-5′-P concentrations between 0.5 and 1.0 mm. This stimulation was reduced at concentrations higher than 1.0 mm. The Km for the pentapeptide was lowered twofold in the presence of 1 mm pyridoxal-5′-P. The activation by pyridoxal-5′-P is specific, as 1 mm pyridoxal, pyridoxine, pyridoxine-5′-P, pyridoxamine, pyridoxamine-5′-P, or 4-pyridoxic acid did not stimulate the pentapeptide carboxylation rate. All six analogs, as well as formaldehyde and acetaldehyde, inhibited the carboxylation reaction in a concentration-dependent manner. The activation of the carboxylase by pyridoxal-5′-P appeared to be mediated by its direct binding to the enzyme via Schiff base formation. Sodium borohydride reduction of solubilized microsomes in the presence of pyridoxal-5′-P, followed by dialysis to remove unbound material, resulted in a carboxylase preparation with a specific activity twice that of the untreated control microsomes. The derivatized enzyme was not further stimulated by added pyridoxal-5′-P. This derivatized carboxylase could be obtained in the absence of pentapeptide and divalent cations. The stimulation of the carboxylase activity by divalent cations and pyridoxal-5′-P was mediated at separate site(s) on the enzyme. Studies of the NH2-terminal pyridoxalated pentapeptide with both a normal and PLP-modified enzyme, in the presence and absence of PLP, demonstrated competition of the pentapeptide PLP moiety to a PLP site on the enzyme. It was concluded that pyridoxal-5′-P forms a covalent attachment to an ?-NH2 of a lysine near the active site of the carboxylase. 相似文献
11.
12.
《Biochimica et Biophysica Acta (BBA)/General Subjects》1986,881(1):30-37
Effects of pyridoxal 5′-phosphate on the activity of crude and purified acetylcholinesterase from cerebral hemispheres of adult rat brain were examined. Acetylcholinesterase was completely inactivated by incubation with 0.5 mM pyridoxal 5′-phosphate. The enzyme activity remained unaltered in the presence of analogs of pyridoxal 5′-phosphate, pyridoxal, pyridoxamine and pyridoxamine 5′-phosphate. The inhibition of acetylcholinesterase activity by pyridoxal 5′-phosphate appeared to be of a noncompetitive nature, as determined by Lineweaver-Burk analysis. The inhibitory effect of pyridoxal 5′-phosphate on acetylcholinesterase appeared to be a general one, as the activity of the enzyme from the brains of immature chick and egg-laying hen, and from different tissues of the adult male rats, exhibited a similar pattern in the presence of the inhibitor. The inhibitory effects of pyridoxal 5′-phosphate could be reversed upon exhaustive dialysis of the pyridoxan 5′-phosphate-treated acetylcholinesterase preparations. We propose that the effects of pyridoxal 5′-phosphate are due to its interaction with acetylcholinesterase, and that it can be employed as a useful tool for studying biochemical aspects of this important brain enzyme. 相似文献
13.
A number of proteases have been immobilized on alumina in a two-step procedure: the first step converted them into semisynthetic phosphoproteins which, in the second step, spontaneously bonded to alumina through their phosphate function. The immobilized enzymes thus obtained showed the physical properties typical of the inorganic carrier and a high activity on low molecular weight substrates. 相似文献
14.
William Whitman F.Robert Tabita 《Biochemical and biophysical research communications》1976,71(4):1034-1039
Homogeneous D-ribulose 1,5-bisphosphate carboxylase from , , and are inhibited by low concentrations of pyridoxal 5′-phosphate. In the case of the enzyme from , this inhibition is strongly antagonized by the substrate, D-ribulose 1,5-bisphosphate. These results suggest that pyridoxal 5′-phosphate may act close to or at the ribulose 1,5-bisphosphate binding site of the enzyme from . 相似文献
15.
Summary During the last four days of follicular development prior to ovulation, the activities of
5-3-hydroxysteroid dehydrogenase (3OHD) and glucose-6-phosphate dehydrogenase (G-6-PD) were quantified in cryostat sections of the rat ovary. The product of the enzyme reactions were measured using a scanning and integrating microdensitometer. The enzyme activity was measured in the peripheral region, the antral region and the cumulus of the membrana granulosa (MG) of these follicles on the morning of each of the four days of the estrous cycle. G-6-PD activity was measured in the presence and absence of an intermediate hydrogen acceptor, phenazine methosulphate, to provide a measure of the quantity of Type I and Type II Hydrogen (H) generated: Type I H is considered to be related to hydroxylating reactions such as those of steroids and Type II H to other general biosynthetic activities of cells.In all three regions of the MG of follicles of the ovulable type, 3OHD activity was lowest in estrus and diestrus-1, increased on diestrus-2 and peaked in proestrus. In estrus and diestrus-1, the level of 3OHD activity in the three regions was comparable. However, by diestrus-2, and even more conspicuously in proestrus, enzyme activity was significantly greater in the peripheral region than in the antral region or in the cumulus. During the same period, the level of enzyme activity remained comparable in the last two regions. Throughout the estrous cycle, both Type I and Type II H generation from G-6-PD was greatest in the peripheral region, less in the antral region and least in the cumulus. In the peripheral region, Type I H generation increased progressively after diestrus-1, to reach a maximum in proestrus. In the antral region, Type I H generation increased between diestrus-1 and diestrus-2 and then remained unchanged through proestrus. In the cumulus, Type I H generation remained at levels seen in estrus throughout the remainder of the cycle. Generation of Type II H, in the peripheral region was constant throughout the estrous cycle. In contrast, in the antral region and cumulus, Type II H generation was greater in diestrus-1 and diestrus-2 than on either proestrus or estrus.This work was supported by research grants from the National Institute of Child Health and Human Development (# HD-12684) and (# HD-09542) and from the Rockefeller Foundation 相似文献
16.
Alfred H. Merrill Kihachiro Horiike Donald B. McCormick 《Biochemical and biophysical research communications》1978,83(3):984-990
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC 1.4.3.5) purified from rabbit liver is competitively inhibited by the reaction product, pyridoxal 5′-phosphate. The Ki, 3 μM, is considerably lower than the Km for either natural substrate (18 and 24 μM for pyridoxamine 5′-phosphate and 25 and 16 μM for pyridoxine 5′-phosphate in 0.2 M potassium phosphate at pH 8 and 7, respectively). The Ki determined using a 10% rabbit liver homogenate is the same as that for the pure enzyme; hence, product inhibition is probably not diminished significantly by other cellular components. Similar determinations for a 10% rat liver homogenate also show strong inhibition by pyridoxal 5′-phosphate. Since the reported liver content of free or loosely bound pyridoxal 5′-phosphate is greater than Ki, the oxidase in liver is probably associated with pyridoxal 5′-phosphate. These results also suggest that product inhibition of pyridoxamine-P oxidase may regulate the rate of pyridoxal 5′-phosphate formation. 相似文献
17.
A study was made of (a) the distribution of the coenzyme pyridoxal-5-phosphate (PLP) in four discrete regions of developing and mature rat brains and (b) the effect of dietary pyridoxine deficiency on the distribution. There was an increase in PLP concentration of all the regions from infancy to adulthood. Highest concentration of PLP was found in the medulla and pons in both infants and adults. Pyridoxine deficiency resulted in a more marked reduction of PLP in all regions of the neonatal brain as compared with those in the mature brain. This is consistent with the vulnerability of the developing brain to nutritional stresses. 相似文献
18.
1. The steady residual activity of ox liver glutamate dehydrogenase at equilibrium with the reversible inactivator pyridoxal 5'-phosphate was measured in the presence and absence of various protecting agents. 2. NAD(+) (up to 15mm) and its 3-acetylpyridine analogue (up to 5mm) both failed to protect, in contrast with NADH. 3. Partial protection was given by glutarate and by succinate. Adipate and pentanoate were much less effective. 4. Correspondingly, whereas succinate and glutarate were both shown to be strong inhibitors of the catalytic reaction, competitive with glutamate, adipate was only weakly competitive, and the still weaker inhibition by pentanoate was non-competitive. 5. When the enzyme was saturated with glutarate, NAD(+) became a good, although still partial, protecting agent. In the absence of protection, 1.8mm-pyridoxal 5'-phosphate decreased enzyme activity to 9%, in the presence of 150mm-glutarate to 29%, and with glutarate and 1mm-NAD(+) only to 73%. 6. 2-Oxoglutarate also promoted protection by NAD(+), but neither pentanoate nor succinate did so. The finding with succinate is remarkable in view of findings 3 and 4 above. 7. It seems possible that substrates or analogues possessing the glutarate structure promote a conformational change that alters the mode of NAD(+) binding. This may explain why glutamate is a much better substrate than norvaline or aspartate and why negative interactions in coenzyme binding occur only in the formation of ternary complexes with glutamate or its analogues. 相似文献
19.
Homa Torabizadeh Mehran Habibi-Rezaei Mohammad Safari Ali Akbar Moosavi-Movahedi Hadi Razavi 《Journal of Molecular Catalysis .B, Enzymatic》2010,62(3-4):257-264
It is important to improve the quality of the enzyme inulinase used in industrial applications without allowing the treatment to have any adverse effects on enzyme activity. We achieved preferential chemical modification of the non-catalytic domain of endoinulinase (EC 3.2.1.7) to enhance the thermostability of the enzyme. We used pyridoxal 5′-phosphate (PLP) to modify the more accessible lysine residues at the surface of endoinulinase and then performed a necessary step of reduction with ascorbate. Endoinulinase was incubated in the presence of PLP at various concentrations; this step was followed by reduction of the resulting Schiff base and dialysis. The effects of different PLP concentrations and incubation times on enzyme modification were evaluated. Enzyme deactivation was observed immediately after treatment, even at low PLP concentrations, while reactivation was observed for samples treated with low PLP concentrations after a period of time. Structural analysis revealed that the α-helix content increased from 13.60% to 17.60% after applying the modification strategy; consequently, enzyme stabilization was achieved. The melting temperature (Tm) of the modified enzyme increased from 64.1 °C to 72.2 °C, and a comparative study of thermal stability at 25 °C, 45 °C, and 50 °C for 150 min confirmed that the enzyme was stabilized because of increase in its half-life (t1/2) after PLP modification/ascorbate reduction. The modification process was optimized to achieve the optimum mole ratio for the PLP/endoinulinase (1.37). Excess moles of the modifier are thought to be responsible for enzyme deactivation through unwanted/nonspecific and noncovalent interactions, and the optimization ensured that there was no excess modifier after the desired covalent reaction was complete. 相似文献