首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of hepatic triglyceride lipase from cultured rat hepatocytes and its hormonal regulation were studied. The activity of lipase released into the medium in the presence of heparin was increasing for 24 hours on the 2nd day of culture. The activity in the absence of heparin was only 10% of that in the presence of heparin. When hepatocytes were cultured with anti-hepatic triglyceride lipase IgG, the lipase activity was suppressed by 92%. The results suggest that the enzyme released into the culture medium is identical to hepatic triglyceride lipase which can be released only in the presence of heparin, the mode of release being similar to that of lipoprotein lipase from adipocytes. The addition of colchicine and monensin to the medium resulted in the inhibition of lipase secretion by 20% and 61%, respectively. Insulin enhanced lipase activity only 20%, whereas dexamethasone suppressed the activity by 44%. These data indicated that hepatic triglyceride lipase is secreted and released from hepatocytes in the presence of heparin and its secretion is regulated by hormones.  相似文献   

2.
C J Fielding 《Biochemistry》1976,15(4):879-884
The kinetic constants for membrane-supported lipoprotein lipase have been determined for the enzyme active in lipoprotein triglyceride catabolism in perfused heart and adipose tissues, using a nonrecirculating system. Heart endothelial lipoprotein lipase reacted as a single population of high-affinity substrate binding sites (Km' 0.07 mM triglyceride). Km' (apparent Michaelis constant for the supported enzyme species) was independent of flow rate and the enzyme was rapidly released by heparin, suggestive of a superficial membrane binding site. Lipoprotein lipase active in perfused adipose tissue had significantly different kinetic properties, including a low substrate affinity (Km' 0.70 mM triglyceride), diffusion dependence of Km' at low flow rates, and slow release of enzyme by heparin. Adipose tissue may contain a small proportion of high affinity sites. While only a small proportion of total heart tissue lipoprotein lipase was directly active in triglyceride hydrolysis, this study suggests that the major part of lipoprotein lipase in adipose tissue may be involved in the hydrolysis of circulating lipoprotein triglyceride.  相似文献   

3.
Function of hepatic triglyceride lipase in lipoprotein metabolism   总被引:10,自引:0,他引:10  
Rat hepatic triglyceride lipase (H-TGL) was purified from liver tissue extracts by affinity chromatography on Sepharose 4B with covalently linked heparin. The purified rat H-TGL exhibited the properties previously described for this enzyme. Enzyme protein was injected into rabbits for anti-H-TGL antibody production. Antirat-H-TGL did not react against rat lipoprotein lipase (LPL) but inhibited H-TGL-activity both in vitro and in vivo greater than 90%. These antibodies were injected into rats and lipoprotein analyses were performed over a 36-hr period. It could be shown that inactivation of H-TGL by anti-H-TGL gamma-globulins in vivo led to an increase in total triglyceride concentration from 70 mg/dl to 230 mg/dl due to an increase in very low density lipoprotein (VLDL) and low density lipoprotein (LDL) triglycerides 4 hr after antibody injection; a marked increase in high density lipoprotein (HDL) phospholipid concentration was observed with almost no change in HDL-cholesterol and HDL-triglycerides. This study documents the ability of antirat-H-TGL-gamma-globulins to inhibit H-TGL in vitro and in vivo. Furthermore, the inhibition of triglyceride removal in vivo demonstrated that this enzyme together with LPL is responsible for the catabolism of VLDL-triglyceride.  相似文献   

4.
We measured lipoprotein lipase activity in dried defatted preparations of rat lung using doubly labeled chylomicron triglyceride as substrate. The enzyme activity was linear for the first hour of incubation at 37 degrees C, had a pH optimum of 8.1 and was completely inhibited by 0.5 M NaC1. Lungs from fed rats hydrolyzed chylomicron triglyceride at a rate of 13.00 mumoles/g per h; the activity rate was unchanged by fasting 8-72 h. Heparin infusion into isolated lungs caused immediate release of lipoprotein lipase to the venous effluent. The activity released was equivalent to about 10% of total lung lipoprotein lipase activity in both fed and fasted rats. Since the ability to remove blood triglyceride is directly related to the level of lipoprotein lipase activity, these findings indicate that the lung is one of the few tissues able to remove efficiently blood triglyceride during fasting.  相似文献   

5.
Following its secretion into the plasma compartment, the high-density lipoprotein (HDL) is presumed to be acted upon by both soluble enzymes, such as lecithin:cholesterol acyltransferase (LCAT), and membrane-associated enzymes, such as lipoprotein lipase and hepatic lipase. Rats were injected intravenously with heparin to release membrane-associated lipolytic activities into the circulation and the collected plasma was incubated overnight at 37 degrees C in the presence or absence of an LCAT inhibitor or an inhibitor of lipoprotein lipase (1 M NaCl). It was observed that lipoprotein lipase accounted for most of the triglyceride hydrolase activity in the heparin-treated plasma, and that the heparin-releasable activities caused an increase in HDL density but no measurable change in particle size when LCAT was inhibited. Heparin treatment caused about a 60% decrease in plasma triacylglycerol during the interval between injection of heparin and blood collection. Although this caused marked compositional changes in the d less than 1.063 g/ml lipoproteins, no changes were observed in the lipid composition or apoprotein distribution in the HDL. Subsequent incubation for 18 h at 37 degrees C produced marked increases in the apoE content of HDL from heparin-treated plasma even when LCAT was inhibited. Time-course studies showed that in the presence of an LCAT inhibitor there was considerable conversion of phosphatidylcholine to lysophosphatidylcholine in heparin-treated plasma, and that this activity was diminished by 1 M NaCl, but that no phospholipolysis was observed in control plasma. By contrast, both heparin-treated and control plasma possessed substantial triglyceride hydrolase activity. The concurrent action of lipases and LCAT was observed to reduce the maximum level of cholesterol esterification which could be achieved in the absence of lipase activity. It is concluded that changes in HDL particle size are mainly attributable to LCAT, but that lipase activities, which are either free in rat plasma or releasable by heparin, play a role in restructuring the phospholipid moiety and altering the protein composition of the HDL, especially with respect to apoE, a potential ligand to cellular receptors.  相似文献   

6.
Fibroblast-like stromal cells obtained from rat epididymal fat pads were grown in culture. It has been shown that these cells release lipoprotein lipase into the culture medium for approximately 10 hr upon exposure of the cells to heparin. Continued incubation of such heparin treated cells in the absence of heparin results in the replenishment of releasable lipase pools over a three day period. The released enzyme is inhibited by NaCl and protamine sulfate.  相似文献   

7.
Postheparin plasma lipolytic activity consists of two hydrolytic activities, hepatic triglyceride lipase and lipoprotein lipase. These two enzymes were separated and partially purified by means of ammonium sulfate precipitation and affinity chromatography using Sepharose with covalently linked heparin and concanavalin A, respectively. Antibodies were produced against hepatic triglyceride lipase and they did not cross react with lipoprotein lipase. Optimal conditions for selective precipitation of hepatic lipase and specific measurement of these two lipases were investigated. This method was applied to the study of 15 patients with hypertriglyceridemia and 8 patients with familial lecithin-cholesterol-acyltransferase deficiency of whom 6 also had a marked elevated plasma triglyceride concentration. All patients had normal values of hepatic plasma lipase. All 8 patients with Type I and 2 of 4 patients with Type V hyperlipoproteinemia had lipoprotein lipase activities that were markedly reduced. The patients with Type III hyperlipoproteinemia and all 8 patients with lecithin-cholesterol-acyltransferase deficiency also had normal lipoprotein lipase values. These studies emphasize the necessity for differentiating between triglyceride lipase activity of hepatic and extrahepatic origin in evaluating patients with impaired triglyceride metabolism.  相似文献   

8.
Studies of lipoprotein lipase during the adipose conversion of 3T3 cells.   总被引:19,自引:0,他引:19  
L S Wise  H Green 《Cell》1978,13(2):233-242
Lipoprotein lipase activity is negligible in exponentially growing 3T3-L1 cells and 3T3-F442A cells, but develops in both lines when they reach a confluent state and undergo adipose conversion. 3T3-C2 cells, which undergo adipose conversion with extremely low frequency, do not develop the enzyme. The lipase activity of 3T3-L1 and 3T3-F442A is greatly enhanced by insulin and increases 80–180 fold during the adipose conversion. The lipase has the following characteristics in common with lipoprotein lipase from adipose and other tissues: it is dependent upon serum, is inhibited by 0.5–1.0 M sodium chloride, is recovered from acetone powders, has an alkaline pH optimum and is released from the cells by heparin. Like the lipoprotein lipase of tissue adipose cells, the enzyme of 3T3-L1 decays in the presence of cycloheximide with a half-time of about 25 min at 37°C.The ability of 3T3-F442A and 3T3-L1 to take up triglyceride from the medium depends almost completely upon lipoprotein lipase. They incorporate the fatty acids of a large fraction of a triglyceride emulsion added to the medium, and this utilization is stimulated by heparin. Very little of the glycerol portion of the triglyceride is incorporated. 3T3-C2, which lacks lipoprotein lipase, utilizes very little of either the fatty acid or the glycerol portion of triglyceride.The relevance of external lipid or lipoprotein to both the adipose conversion and the appearance of lipoprotein lipase was tested using confluent cultures in medium depleted of these components. In the presence of serum whose lipoproteins have been removed by flotation, lines 3T3-F442A and 3T3-L1 undergo adipose conversion as completely as in the presence of untreated serum, and lipoprotein lipase activity appears at essentially the same rate. In medium whose serum supplement has been extracted with acetone:ethanol, 3T3-F442A cells undergo adipose conversion to nearly the same extent as in untreated serum, and develop nearly the same increase in lipoprotein lipase activity.Unless even very low concentrations of lipids or lipoprotein are saturating it can be concluded that the adipose conversion does not depend upon external lipids or lipoproteins for its induction; rather the differentiation program is built into the cell type and comes into operation when growth is arrested even in their absence. The source of fatty acids utilized for triglyceride synthesis, however, may be affected by the amount of lipid provided to the cells.  相似文献   

9.
The mechanism of heparin stimulation of rat adipocyte lipoprotein lipase   总被引:2,自引:0,他引:2  
Free fat cells and stromal-vascular cells were prepared from rat adipose tissue by incubation with collagenase. NH(4)OH-NH(4)Cl extracts of acetone-ether powders prepared from fat cells contained lipoprotein lipase activity but extracts of stromal-vascular cells did not. Intact fat cells released lipoprotein lipase activity into incubation medium, but intact stromal-vascular cells did not. The lipoprotein lipase activity of the medium was increased when fat cells were incubated with heparin, and this was accompanied by a corresponding decrease in the activity of subsequently prepared fat cell extracts. Heparin did not release lipoprotein lipase activity from stromal-vascular cells. The lipoprotein lipase activity of NH(4)OH-NH(4)Cl extracts of fat cell acetone powders is increased by the presence of heparin during the assay. This increase is not due to preservation of enzyme activity, but to increased binding of lipoprotein lipase to chylomicrons. Protamine sulfate and sodium chloride have little effect on the binding of lipoprotein lipase to chylomicrons, but they inhibit enzyme activity after binding to substrate has occurred. These inhibitors do, however, inhibit the stimulatory effect of heparin on enzyme-substrate binding.  相似文献   

10.
Cell suspensions prepared from rat hearts were separated by replating into F1, F2 and M cultures, and cultured for 3--11 days. Lipoprotein lipase activity was highest in the F1 cultures which consisted mainly of non-beating, mesenchymal cells. The enzyme activity was released into the medium only after addition of heparin. The release occurred by an initial rapid phase and a continuous slow phase. Both the rapid and the slow release of enzyme activity by heparin were inhibited by about 70% after a 4 h pretreatment with colchicine. Thus, it seems that the vesicular transport is responsible for the translocation of lipoprotein lipase to the cell surface also during the slow process of release. The residual activity in the colchicine treated cultures was higher than in the controls indicating that no inhibition of enzyme synthesis occurred. The slow phase of enzyme release continued also after removal of heparin from the medium but was reduced markedly when protein synthesis was inhibited by cycloheximide. Thus the increase in total enzyme activity encountered after exposure to heparin resulted from stimulation of new enzyme synthesis. The half-time of lipoprotein lipase in the F1 cultures was 35 min and full restoration of enzyme activity was found 60 min after complete removal of cycloheximide from the system. These data indicate that the culture system can be used to study regulation of new enzyme synthesis and its turnover.  相似文献   

11.
Lipoprotein lipase and hepatic lipase have been shown to be present in the post-heparin plasma of sheep. Intravenous injection of heparin into sheep produced a rapid increase in the free fatty acid concentration and lipolytic enzyme activity of the plasma, both peaking within 5-15 min and then falling to pre-heparin levels within 30-60 min. Lipolytic activity was not detected in plasma before heparin treatment. Two distinct lipolytic activities were separated from the plasma by chromatography on heparin-Sepharose 6B. Lipoprotein lipase was identified on the basis that the lipolytic activity was dependent upon the addition of plasma, inhibited by 1M NaCl, and inhibited by a specific antiserum against lipoprotein lipase. The second lipolytic activity of plasma was identified as hepatic lipase, as it was not dependent upon plasma for activity, nor was it inhibited by 1M NaCl or antiserum against lipoprotein lipase. Its properties were identical to the lipase extracted from the liver of sheep. Lipoprotein-lipase activity, but not hepatic-lipase activity, was dependent upon the nutritional state of the sheep at the time of heparin injection. However, hepatic lipase comprised a significant proportion of the total lipolytic activity.  相似文献   

12.
Mechanisms for turnover of lipoprotein lipase in guinea pig adipocytes   总被引:3,自引:0,他引:3  
Guinea-pig adipocytes released lipoprotein lipase activity to the medium without depletion of cell-associated lipoprotein lipase activity. Heparin caused immediate release of 20-25% of the lipase activity to the medium, and also enhanced the continued release. After addition of cycloheximide, cell-associated lipoprotein lipase activity decreased rapidly. Release of lipase activity to the medium continued unabated for about 30 min, but there was little release thereafter. The release accounted for only about 25% of the initial lipoprotein lipase activity in the absence and about 50% in the presence of heparin. In pulse-chase experiments with [35S]methionine, labeled lipoprotein lipase appeared in the medium within 40 min, and most of the release occurred during the first h of chase. In a 4-h chase the total (cells + medium) amount of labeled lipase decreased to 34%. Thus, degradation was a main fate of the lipase. Heparin markedly increased the amount of labeled lipase that was released to the medium and decreased the amount that was degraded. Heparin did not change the time-course for the release, and the amount of labeled lipase degraded was proportional to the amount not released to the medium, indicating that the effect of heparin was primarily on release, not on degradation as such. This study demonstrates that adipocytes synthesize lipoprotein lipase in excess of what is being released, and that the excess is rapidly degraded.  相似文献   

13.
Hypertriglyceridemia due to 2-deoxy-D-glucose administration was observed in conscious rats. Plasma triglyceride levels were elevated dose-dependently 2 or 3 hrs after administration of 2-deoxy-D-glucose (5-40 mg/100 g body weight). Prior to the rises in triglyceride, plasma epinephrine levels were elevated rapidly, whereas plasma insulin was not increased depspite continuous hyperglycemia. Elevation of plasma triglyceride was suppressed by addition of phentolamine, whereby insulin release was remarkably enhanced. Plasma lipoprotein lipase release by heparin infusion was significantly suppressed 2 hr after 2-deoxy-D-glucose administration. In conclusion, it is suggested that the hypertriglyceridemic effect of 2-deoxy-D-glucose may be mediated by decreased clearance of endogeneous lipoprotein particles (mostly chylomicrons) attributable to a lowered lipoprotein lipase activity.  相似文献   

14.
The effect of pretreatment with colchicine or vinblastine on the lipoprotein lipase activity of rat heart was studied. Administration of colchicine or vinblastine 4 h prior to perfusion of the heart caused a very marked reduction in lipoprotein lipase activity released into the perfusate within 1 min of heparin perfusion. At the same time an increase in residual heart lipase occurred so that total lipoprotein lipase content of the heart (heparin releasable plus residual) did not change. The colchicine effect was dose and time dependent; no decrease in heparin-releasable enzyme activity occurred after only 30 min of pretreatment or upon addition of colchicine into the perfusate. These results indicate that colchicine did not impede enzyme synthesis or its release from the cell surface, but may have interfered with the transport of lipoprotein lipase from the site of its synthesis to the endothelial cell surface.  相似文献   

15.
Exposure of sated rats to 45% N2 in air for 5h increased serum triglyceride levels by 212% over the levels in normoxic rats. This increase in triglyceride levels was accompanied by a decrease in plasma triglyceride hydrolase activity after intravenous injection of heparin. Further fractionation of the activity by inhibition of lipoprotein lipase indicated that the low triglyceride hydrolase activity is mainly due to a reduction in hepatic triglyceride lipase, which is inversely correlated with the serum triglyceride level. The hypoxic exposure decreased the arterial blood [acetoacetate]/[beta-hydroxybutyrate] ratio in the sated rats, which is believed to reflect the oxidation-reduction state in hepatic mitochondria, but did not affect the level of serum enzymes indicative of tissue damage. On the other hand, triglyceride levels did not change during hypoxic exposure in fasted rats. Thus, hypertriglyceridemia in sated rats following exposure to hypoxia may result from impaired removal of circulating triglycerides by hepatic triglyceride lipase located in the sinusoidal surface of the liver.  相似文献   

16.
The binding of Apolipoprotein E supplemented triglyceride emulsions to sulfated glycosaminoglycans demonstrated specificity for the carbohydrate polymers. Glucosamine containing glycosaminoglycans with relatively less sulfate had little affinity for the Apo E emulsion whereas those with more sulfate (i.e. heparin and sulfated heparans) effectively bound the emulsion. Galactosamine containing glycosaminoglycans (chondroitin 4 sulfate and dermatan sulfate) demonstrated no binding. The Apo E induced uptake of triglyceride emulsions by hepatocytes was inhibited by highly sulfated polysaccharides (i.e. heparin, dextran sulfate) but other glycosaminoglycans which did not bind the emulsion were ineffective in this inhibition. The same sulfated compounds which inhibited the hepatocyte Apo E emulsion interaction effectively released hepatic lipase from isolated heptic perfusions. Glycosaminoglycan sulfates which did not bind the Apo E supplemented emulsions and did not inhibit hepatocyte association were ineffective in releasing lipase. A heparan mixture isolated from human liver was much less effective in inhibiting Apo E induced association of emulsions with hepatocytes, than heparin. A highly sulfated octasaccharide fraction isolated from bovine liver heparin inhibited more effectively than the human heparans but less than the heparin. Inhibition of Apo E mediated hepatocyte emulsion association was produced by a one hour exposure of the cells to either heparinase or heparanase. The heparanase was more active than the heparinase and both were effective in the presence of protease inhibitors. Enzymes hydrolyzing chondroitin sulfates and hyaluronic acid were ineffective in inhibiting the Apo E induced association. The specific binding of human low density lipoprotein to the hepatocyte was much less effected by the heparanase exposure than the Apo E mediated binding.  相似文献   

17.
Cultured Chinese-hamster ovary cells (CHO cells) were found to produce and secrete a lipase, which was identified as a lipoprotein lipase by the following criteria. Its activity was stimulated by serum and apolipoprotein CII, and was inhibited by high salt concentration. The lipase bound to heparin-agarose and co-eluted with 125I-labelled bovine lipoprotein lipase in a salt gradient. A chicken antiserum to bovine lipoprotein lipase inhibited the activity and precipitated a labelled protein of the same apparent size as bovine lipoprotein lipase from media of CHO cells labelled with [35S]methionine. The lipase activity and secretion were similar in growing cells and in cells that had reached confluency. Hence, lipoprotein lipase appears to be expressed constitutively in CHO cells and is not linked to certain growth conditions, as in pre-adipocyte and macrophage cell lines. At 37 degrees C, but not at 4 degrees C, heparin increased the release of lipase to the medium 2-4-fold. This increased release occurred without depletion of cell-associated lipase activity, suggesting that heparin enhanced release of newly synthesized lipase.  相似文献   

18.
Human lipoprotein lipase and hepatic triglyceride lipase were purified to homogeneity from post-heparin plasma. These enzymes were purified 250,000- and 100,000-fold with yields of 27 +/- 15 and 19 +/- 6%, respectively. Molecular weight determination by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and reducing agents yielded Mr of 60,500 +/- 1,800 and 65,200 +/- 400, respectively, for lipoprotein lipase and hepatic triglyceride lipase. These lipase preparations were shown to be free of detectable antithrombin by measuring its activity and by probing of Western blots of lipases with a monospecific antibody against antithrombin. In additions, probing of Western blots with concanavalin A revealed no glycoproteins corresponding to the molecular weight of antithrombin. Four stable hybridoma-producing distinct monoclonal antibodies (mAb) to hepatic triglyceride lipase were isolated. The specificity of one mAb, HL3-5, was established by its ability to immunoprecipitate hepatic triglyceride lipase catalytic activity. Interaction of HL3-5 with this lipase did not inhibit catalytic activity. The three other mAb interacted with hepatic triglyceride lipase only after denaturation of the enzyme with detergents. The relatedness of these two enzymes was examined by comparing under the same conditions the thermal inactivation, the sensitivity to sulfhydryl and reducing agents, amino acid composition, and the mobility of peptide fragments generated by cyanogen bromide cleavage. The results of these studies strongly support the view that the two enzymes are different proteins. Immunological studies confirm this conclusion. Four mAb to hepatic triglyceride lipase did not interact with lipoprotein lipase in Western blots, enzyme-linked immunosorbent assay, and immunoprecipitation experiments. These immunological studies demonstrate that several epitopes of the hepatic triglyceride lipase protein moiety are not present in the lipoprotein lipase molecule.  相似文献   

19.
Heparin-released triglyceride lipase (TGL) from Chang liver cells (ATCC CCL 13) was investigated using very low density lipoproteins (VLDL) as a substrate. The TGL activity was released into the culture medium when the cells were incubated with heparin. The enzyme showed maximum activity at pH 8.5, and 80% inhibition by 0.6 M NaCl. These results indicated that Chang liver cells, a cell line derived from liver, synthesize lipoprotein lipase.  相似文献   

20.
Regulation of the secretion of lipoprotein lipase by mouse macrophages   总被引:4,自引:0,他引:4  
The regulation of the secretion of lipoprotein lipase was studied in primary cultures of mouse peritoneal macrophages and in the murine macrophage cell line J774. As previously reported, both cell types secrete a lipase with the characteristics of lipoprotein lipase. Incubation of macrophages with insulin, insulin-like growth factor, and L-thyroxine had no effect on lipoprotein lipase secretion. Incubation with dexamethasone and with several agents which increase intracellular cyclic AMP led to a decrease in lipoprotein lipase secretion by mouse peritoneal macrophages. These results suggest that the hormonal regulation of lipoprotein lipase in macrophages is different from that in adipose tissue and heart muscle. Incubation of the macrophages with heparin caused a marked increase in the secretion of lipoprotein lipase. Short incubations with heparin (5 min) caused a release of the enzyme into the media, while longer incubations caused a 2-8-fold increase in net lipoprotein lipase secretion which was maximal after 2-16 h depending on cell type, and persisted for 24 h. The effect of heparin was dose-dependent and specific (it was not duplicated by other glycosaminoglycans). The mechanism of heparin-induced increase in lipoprotein lipase secretion was explored. The increase was not caused by the release of a presynthesized intracellular pool of lipoprotein lipase or by the stabilization of lipoprotein lipase by heparin after secretion. The heparin-induced increase in lipoprotein lipase secretion was dependent on protein synthesis. The secretion of lipoprotein lipase by macrophages in response to low levels of heparin may be a significant factor in the formation of atherosclerotic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号