首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We have investigated the effect of the cholesterol content of small unilamellar liposomes composed of egg phosphatidylcholine (PC) and containing 6-carboxyfluorescein (6-CF) on the in-vivo fate of their radiolabelled PC (3H-PC) and tracer [1-14C]-cholesteryl oleate (14C-cholesteryl oleate) components. Chromatography of the blood plasma of mice at various times after injection with liposomes composed of equimolar amounts of PC and cholesterol (PCCHOL liposomes) showed a main peak (peak A) containing most 3H-PC, 14C-cholesteryl oleate and 6-CF and representing intact liposomes. With cholesterol- free liposomes (PC liposomes) on the other hand, there was increasing transfer of the two radiolabelled lipids from peak A to the subsequently eluted high density lipoproteins (HDL) (peak B) paralleled by increasing loss of liposomal stability as evidenced by 6-CF release. Studies on the rate of clearance of PCCHOL liposomes showed half-lives of 110 min (3H-PC) and 120 min (14C-cholesteryl oleate marker). Similar studies with PC liposomes revealed complex patterns of clearance evaluation of which was hampered by a number of observed or anticipated concurrent events: removal of liposomes by tissues, transfer of PC and cholesteryl oleate to HDL, clearance of HDL and donation of the two lipids by HDL to, or their exchange with lipids of, tissues.  相似文献   

2.
This study focuses on the activity of the pentose-phosphate pathway and its relationship to de novo synthesis of fatty acids and cholesterol in oligodendrocyte-enriched glial cell cultures derived from 1-week old rat brain. The proportion of glucose that was metabolized along the pentose-phosphate pathway was estimated by measuring 14CO2 production from [1-14C]-, [2-14C]- and [6-14C]glucose, the utilization of glucose and the production of lactate. Incorporation of 14C from [14C]glucose and from [3-14C]acetoacetate into lipids was analysed. The pentose- phosphate pathway produced much more CO2 from glucose than the Krebs cycle, although it accounted for only a small part of the consumption of glucose (< 3%). The higher 14CO2 production from [2-14C]glucose than from [6-14C]glucose indicated that recycling of the products of the pentose-phosphate pathway takes place in these cells.Gradual inhibition of the pathway with increasing concentrations of 6-aminonicotinamide resulted in a parallel inhibition of the conversion of acetoacetate and of glucose into fatty acids and into cholesterol. Glycolysis was also strongly inhibited in the presence of 6-aminonicotinamide whereas the activity of the Krebs cycle was not affected.These results suggest that de novo synthesis of fatty acids and cholesterol by oligodendrocytes of neonatal rats is closely geared to the activity of the pentose-phosphate pathway in these cells.  相似文献   

3.
After foliar application of [4-14C]cholesterol to a Solanum khasianum shrub during a 6-week period, cholesterol was recovered not only from untreated leaves, but also from fruits at three different stages of maturity. In addition to free [4-14C]cholesterol, small amounts of [4-14C]cholesteryl esters but no [4-C14]cholesteryl glycosides were found in the fruits, treated, and untreated leaves. Thus, cholesteryl glycosides are probably not involved in the translocation of cholesterol. The implications of cholesterol translocation in the kinetics of solasodine Production are discussed.  相似文献   

4.
《Insect Biochemistry》1986,16(1):17-23
The synthesis of [4-14C]cholesta-4,6-dien-3-one and [4-14C]3β-hydroxy-5α-cholestan-6-one is described. Both [4-14C]cholest-4-en-3-one and [4-14C]cholesta-4,6-dien-3-one were not incorporated significantly into ecdysteroids compared to [1α,2α-3H]cholesterol in fifth instar and maturing adult female Schistocerca gregaria. Similarly, [4-14C]3β-hydroxy-5α-cholestan-6-one was not incorporated significantly in the latter system. The results suggest that none of the three 14C-substrates are intermediates in ecdysteroid biosynthesis from cholesterol, although possible complications from permeability barriers cannot be discounted. [4-14C, 7-3H]7-dehydrocholesterol has been synthesized and incorporated into ecdysteroids in adult female Schistocerca gregaria and in Spodoptera littoralis pupae. Although approximately half the tritium was eliminated during ecdysteroid synthesis in S. gregaria, there was essentially complete retention of the tritium in Spodoptera. The results support the direct incorporation of 7-dehydrocholesterol into ecdysteroids and not via cholesterol. A possible explanation for the loss of appreciable tritium in S. gregaria is discussed.  相似文献   

5.
CYP46A1 is a CNS-specific enzyme, which eliminates cholesterol from the brain and retina by metabolism to 24-hydroxycholesterol, thus contributing to cholesterol homeostasis in both organs. 2-Hydroxypropyl-β-cyclodextrin (HPCD), a Food and Drug Administration-approved formulation vehicle, is currently being investigated off-label for treatment of various diseases, including retinal diseases. HPCD was shown to lower retinal cholesterol content in mice but had not yet been evaluated for its therapeutic benefits. Herein, we put Cyp46a1?/? mice on high fat cholesterol-enriched diet from 1 to 14 months of age (control group) and at 12 months of age, started to treat a group of these animals with HPCD until the age of 14 months. We found that as compared with mature and regular chow-fed Cyp46a1?/? mice, control group had about 6-fold increase in the retinal total cholesterol content, focal cholesterol and lipid deposition in the photoreceptor-Bruch’s membrane region, and retinal macrophage activation. In addition, aged animals had cholesterol crystals at the photoreceptor-retinal pigment epithelium interface and changes in the Bruch’s membrane ultrastructure. HPCD treatment mitigated all these manifestations of retinal cholesterol dyshomeostasis and altered the abundance of six groups of proteins (genetic information transfer, vesicular transport, and cytoskeletal organization, endocytosis and lysosomal processing, unfolded protein removal, lipid homeostasis, and Wnt signaling). Thus, aged Cyp46a1?/? mice on high fat cholesterol-enriched diet revealed pathological changes secondary to retinal cholesterol overload and supported further studies of HPCD as a potential therapeutic for age-related macular degeneration and diabetic retinopathy associated with retinal cholesterol dyshomeostasis.  相似文献   

6.
Early responses of cholesterol metabolism to dietary cholesterol were compared between exogenous hypercholesterolemic (ExHC) and Sprague-Dawley rats. Both strains had a similar radioactivity of [14C]cholesterol in the serum half a day after the oral administration, but thereafter the radioactivity disappeared slowly in ExHC rats. ExHC rats promptly altered in response to the dietary cholesterol, activities of cholesterol 7α-hydroxylase and cholesterol synthesis in the liver and fecal excretion of bile acids derived from [14C]cholesterol administered orally. Lymphatic transport for 24 hr of [14C]cholesterol was similar between the strains. Triton administration resulted in a marked accumulation of cholesterol in serum d > 1.006 g/ml lipoproteins in ExHC rats; in addition, the formation of cholesteryl esters from [14C]oleic acid intravenously infused was greater in ExHC rats. These results indicate that ExHC rats increase serum cholesterol in response to exogenous cholesterol by decreasing the liver uptake and enhancing the secretion in the liver.  相似文献   

7.
β-Alanine, though producing a deficiency of taurine in the tissues, had a similar effect on cholesterol metabolism as taurine. Both caused increased activity of hepatic hydroxymethylglutaryl coenzyme A reductase and increased incorporation of 1, 2 of [14C]-acetate into liver cholesterol. Both caused increased concentration of biliary cholesterol and bile acids. There was increased activity of lipoprotein lipase in heart, but decreased activity in the adipose tissue in both cases. Release of lipoproteins into circulation was decreased in both cases.  相似文献   

8.
Human HDL (1.070-1.210), doubly labelled with 3H/14C-labelled unesterified cholesterol and 3H-labelled esterified cholesterol were incubated for 1–5 h with monolayer cultures of human endothelial cells. HDL were preincubated for 60–120 min the presence of albumin and with/without purified phospholipase A2 (control HDL, phospholipase A2 HDL) before dilution in the cell culture medium. Average phosphatidyl-choline (PC) degradation was 62.10% ± 2.57% (range 45–80%). A purified lipase /phospholipase A1 from guinea pig pancreas was used in some experiments (range of PC hydrolysis: 16–70%). (1) 3H/14C-labelled unesterified cholesterol and 3H-labelled esterified cholesterol appeared in cells during 0–5 h incubations. Trypsin treatment allowed a simple adsorption of HDL onto the cell surface to be avoided, and most of the 3H-labelled esterified cholesterol transferred to cells was hydrolysed. Cell uptake of radioactive cholesterol increased as a function of HDL concentration but no saturation was achieved at the highest lipoprotein concentration used (200 μg cholesterol/ml). Flux of 3H/14C-labelled unesterified cholesterol was related to the cell cholesterol content, suggesting that it might partly represent an exchange process. The cell cholesterol content was slightly increased after 5 h incubation with HDL (+16%). (2) Pretreatment of HDL with purified phospholipase A2 doubled on average the amount of cell recovered 3H-labelled esterified cholesterol, while the flux of 3H/14C-labelled unesterified cholesterol was enhanced by 15–25%. Both transfer and cell hydrolysis of 3H-labelled esterified cholesterol were increased. A stimulation was also observed using purified lipase/phospholipase A1, provided that a threshold phospholipid degradation was achieved (between 27 and 45%). (3) Endothelial cells were conditioned in different media so as to modulate their charge in cholesterol. The uptake of 3H-labelled esterified cholesterol was found to be significantly higher in cholesterol-enriched cells compared to the sterol-depleted state. Finally, movements of 3H-labelled esterified cholesterol from HDL to endothelial cells were essentially unaffected by cell density or by the presence of partially purified cholesterol ester transfer protein. The possible roles of the transfer of HDL esterified cholesterol to endothelial cells and its modulation by phospholipases are discussed.  相似文献   

9.
1. Lipogenesis in vivo has been studied in mice given a 250mg. meal of [U-14C]glucose (2·5μc) or given an intraperitoneal injection of 25μg. of [U-14C]glucose (2·0μc). 2. The ability to convert a [U-14C]glucose meal into fatty acid was not significantly depressed by 6–7hr. of starvation. In contrast, incorporation of 14C into fatty acid in the liver after the intraperitoneal dose of [14C]glucose was depressed by 80% and by more than 90% by 1 and 2hr. of starvation respectively. Carcass fatty acid synthesis from the [U-14C]glucose meal was not depressed by 12hr. of starvation, whereas from the tracer dose of [U-14C]glucose the depression in incorporation was 80% after 6hr. of starvation. 3. Re-feeding for 3 days, after 3 days' starvation, raised fatty acid synthesis and cholesterol synthesis in the liver fivefold and tenfold respectively above the levels in non-starved control mice. These increases were associated with an increased amount of both fatty acid and cholesterol in the liver. 4. After 18hr. of starvation incorporation of a [U-14C]glucose meal into carcass and liver glycogen were both increased threefold.  相似文献   

10.
The incorporation of [14C]-acetate, [14C]-mevalonate and [14C]-desmosterol into cholesterol in the muscle mitochondria of the brown shrimpPenaeus aztecus (Ives) is more as compared to that in hepatopancreas. [14C]-Desmosterol is more efficiently incorporated into cholesterol in comparison with [14C]-acetate. The muscle mitochondria from males incorporated more [14C]-mevalonate into cholesterol than those from females, while the converse is true in the hepatopancreatic mitochondria.  相似文献   

11.
Positive liposomes consisting of phosphatidylcholine, cholesterol and stearylamine and negatively charged liposomes consisting of phosphatidylcholine, cholesterol and phosphatidylserine, were double labelled with either 3H-labelled dipalmitoyl phosphatidylcholine and [14C]cholesterol or with [14C]cholesterol and [3H]methotrexate entrapped in the aqueous phase. The plasma levels and urinary excretion of radioactivity from sonicated and non-sonicated liposomes were then compared with the levels of radioactivity from free [3H]methotrexate during a 4 h experimental period after an initial intravenous injection in cynomolgous monkeys. Tissue uptake at the completion of the 4 h experimental period was also measured.It was found that plasma radioactivity from [3H]methotrexate and [14C]cholesterol in sonicated positive liposomes was cleared more slowly than from comparable non-sonicated liposomes, and considerably slower than from free [3H]methotrexate. Radioactivity from sonicated negative liposomes was cleared more rapidly than from positive sonicated liposomes. Positive liposomes captured considerably more [3H]methotrexate than negative liposomes and showed very low permeability to [3H]methotrexate in in vitro studies, even in the presence of high concentrations of serum.[14C]Cholesterol radioactivity was cleared more rapidly from plasma than 3H-radioactivity from liposome-entrapped [3H]methotrexate for double-labelled sonicated liposomes and generally showed greater uptake into tissues and red blood cells. 3H-labelled dipalmitoyl phosphatidylcholine in sonicated positive liposomes was cleared faster than [14C]cholesterol during the first 3 h. The more rapid disappearance of [14C]cholesterol from the plasma was complemented by greater uptake into a number of tissues, and positive non-sonicated liposomes were taken up to a greater extent by the spleen than equivalent sonicated liposomes.Renal excretion of 3H from liposome-entrapped [3H]methotrexate was considerably less than that of 3H from free [3H]methotrexate. There was insignificant excretion, however, of 14C from cholesterol in the urine.Entrapment in liposomes completely prevented the otherwise considerable breakdown of free methotrexate to 3H-containing products in plasma and partially prevented its breakdown in tissues.These studies indicate marked differences in the distribution of liposomes in vivo due to surface charge and size, and some degree of exchange of the lipid components of the liposome bilayer independent of the distribution of the entrapped species. They also show that entrapment in liposomes can reduce metabolic degradation of a drug, maintain high plasma levels and reduce its renal excretion.  相似文献   

12.
Positive liposomes consisting of phosphatidylcholine, cholesterol and stearylamine and negatively charged liposomes consisting of phosphatidylcholine, cholesterol and phosphatidylserine, were double labelled with either 3H-labelled dipalmitoyl phosphatidylcholine and [14C]cholesterol or with [14C]cholesterol and [3H]methotrexate entrapped in the aqueous phase. The plasma levels and urinary excretion of radioactivity from sonicated and non-sonicated liposomes were then compared with the levels of radioactivity from free [3H]methotrexate during a 4 h experimental period after an initial intravenous injection in cynomolgous monkeys. Tissue uptake at the completion of the 4 h experimental period was also measured.It was found that plasma radioactivity from [3H]methotrexate and [14C]cholesterol in sonicated positive liposomes was cleared more slowly than from comparable non-sonicated liposomes, and considerably slower than from free [3H]methotrexate. Radioactivity from sonicated negative liposomes was cleared more rapidly than from positive sonicated liposomes. Positive liposomes captured considerably more [3H]methotrexate than negative liposomes and showed very low permeability to [3H]methotrexate in in vitro studies, even in the presence of high concentrations of serum.[14C]Cholesterol radioactivity was cleared more rapidly from plasma than 3H-radioactivity from liposome-entrapped [3H]methotrexate for double-labelled sonicated liposomes and generally showed greater uptake into tissues and red blood cells. 3H-labelled dipalmitoyl phosphatidylcholine in sonicated positive liposomes was cleared faster than [14C]cholesterol during the first 3 h. The more rapid disappearance of [14C]cholesterol from the plasma was complemented by greater uptake into a number of tissues, and positive non-sonicated liposomes were taken up to a greater extent by the spleen than equivalent sonicated liposomes.Renal excretion of 3H from liposome-entrapped [3H]methotrexate was considerably less than that of 3H from free [3H]methotrexate. There was insignificant excretion, however, of 14C from cholesterol in the urine.Entrapment in liposomes completely prevented the otherwise considerable breakdown of free methotrexate to 3H-containing products in plasma and partially prevented its breakdown in tissues.These studies indicate marked differences in the distribution of liposomes in vivo due to surface charge and size, and some degree of exchange of the lipid components of the liposome bilayer independent of the distribution of the entrapped species. They also show that entrapment in liposomes can reduce metabolic degradation of a drug, maintain high plasma levels and reduce its renal excretion.  相似文献   

13.
Cytochrome P-450scc (P-450 XIA1) from bovine adrenocortical mitochondria was investigated using a suicide substrate: [14C]methoxychlor. [14C]Methoxychlor irreversibly abolished the activity of the side-chain cleavage enzyme for cholesterol (P-450scc) and the inactivation was prevented in the presence of cholesterol. The binding of [14C]methoxychlor and cytochrome P-450scc occurred in a molar ratio of 1:1 and the cholesterol-induced difference spectrum of cytochrome P-450scc was similar with the methoxychlor-induced difference spectrum. [14C]Methoxychlor-binding peptides were purified from tryptic-digested cytochrome P-450scc modified with [14C]methoxychlor. Determination of the sequence of the amino-acid residues of a [14C]methoxychlor-binding peptide allowed identification of the peptide comprising the amino-terminal amino-acid residues 8 to 28.  相似文献   

14.
1. The importance of fatty acid synthesis as a pathway for the disposal of ingested glucose has been evaluated in rats and mice given a purified diet high in glucose and low in fat. [U-14C]Glucose was either added to the diet and fed for 24hr. or given by stomach tube as a 250mg. (mice) or 1000mg. (rats) meal. The two methods of isotope administration gave similar results. 2. Under the conditions employed fatty acid synthesis appeared to be a more important pathway for glucose disposal in mice than in rats. In mice 15·3% of ingested [U-14C]glucose was converted into fatty acid and in rats the corresponding value was 8·6%. In contrast, the conversion of [U-14C]glucose into cholesterol, as a percentage of dose, was twice as high in rats as in mice. 3. The effect of 20% of corn oil in the diet on the conversion of dietary [U-14C]glucose into fat was also investigated. Mice given diets containing 1% or 20% of corn oil converted 14·6% or 7·0% respectively of dietary [U-14C]glucose into fatty acid over a 24hr. period. There was no effect of fat on the incorporation of the isotope into cholesterol. 4. In mice given diets containing 1% or 20% of corn oil approx. 10% and 2% respectively of newly synthesized fatty acids were found in the liver. Hepatic fatty acid synthesis appears to be more sensitive to dietary fat than is extrahepatic synthesis.  相似文献   

15.
The feeding of rabbits with a diet supplemented with 2% cholesterol caused a significant increase in the concentration of serum and hepatic microsomal cholesterol while not affecting serum high-density lipoprotein cholesterol concentration. The concentration of cytochrome b5 was also increased in the cholesterol-fed rabbits but no change in the concentration of cytochrome P-450 was apparent. The increase in microsomal cholesterol was accompanied by an inhibition of hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and a marked stimulation of acyl-coenzyme A:cholesterol acyltransferase activity. The incorporation of [1-14C]acetate into cholesterol and dolichol was strongly inhibited in liver slices of cholesterol-fed animals. In contrast, while incorporation of [2-14C]mevalonate into cholesterol was also inhibited by approximately 90%, incorporation of this precursor into dolichol was stimulated fourfold. The increased incorporation of mevalonate into dolichol was consistent with a threefold increase in the activity of the dolichol phosphate-dependent mannosyl transferase. The possible significance of these differences is discussed.  相似文献   

16.
There is considerable evidence suggesting that compartmentalized functional pools of cholesterol in the liver contribute differently to the formation of bile acids as the precursor. The present paper deals with the incorporation of [1-14C]acetate and of [1,2-3H]cholesterol carried on lipoproteins (LDL and HDL) into biliary bile acids in perfused rat livers and bile-fistula rats. The results showed that endogenous cholesterol synthesized newly from [1-14C]acetate in the liver was incorporated into both cholic acid and chenodeoxycholic acid in a similar way, while exogenous lipoprotein-[1,2-3H]cholesterol delivered to hepatocytes from hepatic circulation was incorporated into chenodeoxycholic acid at a higher rate.  相似文献   

17.
—Cultured C-6 glial cells were utilized to evaluate the effect of the antimicrotubular drug, Colcemid, on 3-hydroxy-3-melhylglutaryl coenzyme A (HMG-CoA) reductase and cholesterol synthesis in cultured C-6 glial cells. The data indicate that Colcemid causes a marked inhibition of cholesterol synthesis (from [14C]acetate or 3H2O) in these cells. A concentration of 0.5 μM led to a 50% lower rate of synthesis after 2 h and an 80–85% lower rate after 12 h or longer. That the effect of Colcemid is mediated at the level of HMG-CoA reductase was shown by defining closely coordinate temporal and quantitative changes in the activity of this enzyme under identical conditions. No comparable change in cell growth or in total protein synthesis accompanied the effect of Colcemid. The drug did lead to a decrease in the rate of DNA synthesis (from [3H]thymidine) but this effect was preceded by the decrease in the rate of cholesterol synthesis. Marked changes in glial cell shape were induced by exposure to Colcemid, and the temporal and quantitative aspects of these changes appeared to closely parallel the effects on reductase activily and cholesterol synthesis. The dala suggest that microtubules are involved in the regulation of HMG-CoA reductase and cholesterol synthesis in mammalian cells and that there are important interrelations between microtubules, glial differentiation and cholesterol synthesis.  相似文献   

18.
14α-Ethyl-5α-cholest-7-en-15α-ol-3-one was prepared in 85% yield by selective oxidation of the 3β-hydroxyl function of 14α-ethyl-5α-cholest-7-en-3β,15α-diol by cholesterol oxidase. 14α-Ethyl-5α-cholest-7-en-15α-ol-3-one caused a 50% inhibition of the incorporation of [1-14C]-acetate into digitonin-precipitable sterols at a concentration of 6 × 10?9M in L cells and a 50% reduction in level of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase activity in the same cells at a concentration of 4 × 10?8 M.  相似文献   

19.
Ganoderma lucidum is a medicinal fungus belonging to the Polyporaceae family which has long been known in Japan as Reishi and has been used extensively in traditional Chinese medicine. We report the isolation and identification of the 26-oxygenosterols ganoderol A, ganoderol B, ganoderal A, and ganoderic acid Y and their biological effects on cholesterol synthesis in a human hepatic cell line in vitro. We also investigated the site of inhibition in the cholesterol synthesis pathway. We found that these oxygenated sterols from G. lucidum inhibited cholesterol biosynthesis via conversion of acetate or mevalonate as a precursor of cholesterol. By incorporation of 24,25-dihydro-[24,25-3H2]lanosterol and [3-3H]lathosterol in the presence of ganoderol A, we determined that the point of inhibition of cholesterol synthesis is between lanosterol and lathosterol. These results demonstrate that the lanosterol 14α-demethylase, which converts 24,25-dihydrolanosterol to cholesterol, can be inhibited by the 26-oxygenosterols from G. lucidum. These 26-oxygenosterols could lead to novel therapeutic agents that lower blood cholesterol.  相似文献   

20.
—The uptake into subcellular fractions of developing rat brain in vivo of intracerebrally injected [4-14C]cholesterol, [24-3H]cerebrosterol, and [24-3H]24-epicerebrosterol was measured for periods up to 30 days following administration. [4-14C]cholesterol was accumulated rapidly in nuclei, nerve endings, and microsomes, more slowly in myelin and mitochondria. [24-3H]cerebrosterol was accumulated rapidly in myelin, nerve endings, and microsomes, more slowly in nuclei and mitochondria. The uptake of [24-3H]24-epicerebrosterol was essentially the same as that of [24-3H]cerebrosterol. Ratios of radioactivities of [24-3H]cerebrosterol and [4-14C]cholesterol accentuated the early accumulation of [24-3H]cerebrosterol in myelin, nerve endings, and microsomes, and declining 3H:14C ratios disclosed the rapid elimination of [24-3H]cerebrosterol and [24-3H]24-epicerebrosterol relative to [4-14C]cholesterol in nerve endings and microsomes. The data suggest that the removal of [24-3H]cerebrosterol from brain results from an enzymic metabolism of the sterol, therefore that cerebrosterol exists in brain in a dynamic state of biosynthesis and catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号