首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentrations of free amino acids were studied in the right and left hemispheres, cerebellum and brain stem of AA and ANA strain rats differing in their voluntary consumption of ethanol solutions. Animals of both the strains were shown to be differentiated by distribution, functional utilization and metabolism of some amino acids in the right and left hemispheres, cerebellum and brain stem.  相似文献   

2.
3.
About 30 different bacterial species were tested for the possible presence of freed-amino acids in their cell pool. Gram-positive bacteria particularly the species of the genusBacillus have a fairly large pool of freely extractabled-amino acids. Varied quantities of freed-amino acids were detected inBacillus subtilis B3,Bacillus subtilis Marburg,Bacillus licheniformis, Bacillus brevis, Bacillus stearothermophilus, Lactobacillus fermenti, Lactobacillus delbrueckii, Staphylococcus aureus andClostridium acetobutylicum. The individual components ofd-amino acids were identified in 5Bacillus species referred to above,d-alanine is the major component; the otherd-amino acids identified are aspartic acid, glutamic acid, histidine, leucines, proline, serine and tyrosine. Thed-amino acid pool size inBacillus subtilis B3 varies with different culture conditions. The pool size is maximum when growth temperature is 30°C and it fluctuates with change in pH of the medium. The maximum quantity ofd-amino acids could be recovered when the culture was at mid log phase. O2 supply to the medium has little effect ond-amino acid pool size. The starvation of cells leads to depletion of thed-amino acid pool which is exhausted almost completely within 4 hours by incubation in nutrient-free medium.  相似文献   

4.
5.
6.
7.
The lysosomal compartment is the place for cellular degradation of endocytosed and autophagocytosed material and a center for normal turnover of organelles as well as most long-lived proteins. Lysosomes were long considered stable structures that broke and released their many hydrolytic enzymes only following necrotic cell death. It is now realized that lysosomes instead are quite vulnerable, although in a heterogeneous way. Their exposure to a number of events, such as oxidative stress, lysosomotropic detergents and aldhydes, as well as overexpression of the p53 protein, causes time-and-dose-dependent lysosomal rupture that is followed by apoptosis or necrosis. Partial lysosomal rupture has often been found to be an early upstream event in apoptosis, while necrosis results from fulminant lysosomal rupture. Consequently, factors influencing the stability of lysosomes, for instance their content of labile and redox-active iron, seem to be essential for the survival of cells.  相似文献   

8.
It is well known that the amino acids in the blood are distributed between the plasma and inside the cells. This study was conducted to determine whether amino acids can be located adsorbed on blood cell membranes. The amino acid concentration in the deproteinized haemolysed blood was higher than that in the fraction of blood after removal of the blood cell membranes by centrifugation. These results showed that a pool of amino acids representing 21.1% of the whole blood cell amino acids was adsorbed on the blood cell membranes of adult Wistar rats. The non-polar amino acids showed high adsorption on the membrane, whereas out of the polar amino acid group, only the non-ionic amino acids did adsorb.Bioquimica i Biologia Molecular. Dept. de Biologia Fonamental i Ciencies de la Salut.  相似文献   

9.
10.
Lysosomal enzyme targeting   总被引:10,自引:0,他引:10  
  相似文献   

11.
12.
Lysosomes are key cellular catabolic centers that also perform fundamental metabolic, signaling and quality control functions. Lysosomes are not static and they respond dynamically to intra‐ and extracellular stimuli triggering changes in organelle numbers, size and position. Such physical changes have a strong impact on lysosomal activity ultimately influencing cellular homeostasis. In this review, we summarize the current knowledge on lysosomal size regulation, on its physiological role(s) and association to several disease conditions.  相似文献   

13.
Lysosomal carboxypeptidase A (cathepsin A) is synthetized in the form of preproenzyme, which undergoes to active enzyme as a result of post-translational modification. It splits off C-terminal amino acid residues from peptides and proteins and synergizes with other proteases in degradation of cellular proteins in lysosomes. Lysosomal carboxypeptidase A has an effect on peptide hormones and peptides of biological activity of tissues and body fluids as well. It forms complexes with some glycosidases that protects them against proteolytic degradation. Deficiency of this enzyme induces storage diseases. Lysosomal carboxypeptidase A as multifunctional enzyme plays an important regulatory role in organismal metabolism.  相似文献   

14.
Lysosomal ROS formation   总被引:1,自引:0,他引:1  
Ubiquinone is inhomogenously distributed in subcellular biomembranes. Apart from mitochondria, where ubiquinone has bioenergetic and pathophysiological functions, unusually high levels of ubiquinone have also been reported in Golgi vesicles and lysosomes. In lysosomes, the interior differs from other organelles in its low pH value which is important to ensure optimal activity of hydrolytic enzymes. Since redox-cycling of ubiquinone is associated with the acceptance and release of protons, we assumed that ubiquinone is part of a redox chain contributing to unilateral proton distribution. A similar function of ubiquinone was earlier suggested by Crane to operate in Golgi vesicles. Support for the involvement of ubiquinone in a presumed couple of redox carriers came from our observation that almost 70% of total lysosomal ubiquinone was in the divalently reduced state. Further reduction was seen in the presence of external NADH. Analysis of the components involved in the transfer of reducing equivalents from cytosolic NADH to ubiquinone revealed the existence of an FAD-containing NADH dehydrogenase. The latter was found to reduce ubiquinone by means of a b-type cytochrome. Proton translocation into the interior was linked to the activity of the novel lysosomal redox chain. Oxygen was found to be the terminal electron acceptor, thereby also regulating acidification of the lysosomal matrix. In contrast to mitochondrial respiration, oxygen was only trivalently reduced giving rise to the release of HO radicals. The role of this novel proton-pumping redox chain and the significance of the associated ROS formation has to be elucidated.  相似文献   

15.
16.
Lysosomal metabolism of glycoproteins   总被引:2,自引:0,他引:2  
Winchester B 《Glycobiology》2005,15(6):1R-15R
The lysosomal catabolism of glycoproteins is part of the normal turnover of cellular constituents and the cellular homeostasis of glycosylation. Glycoproteins are delivered to lysosomes for catabolism either by endocytosis from outside the cell or by autophagy within the cell. Once inside the lysosome, glycoproteins are broken down by a combination of proteases and glycosidases, with the characteristic properties of soluble lysosomal hydrolases. The proteases consist of a mixture of endopeptidases and exopeptidases, which act in concert to produce a mixture of amino acids and dipeptides, which are transported across the lysosomal membrane into the cytosol by a combination of diffusion and carrier-mediated transport. Although the glycans of all mature glycoproteins are probably degraded in lysosomes, the breakdown of N-linked glycans has been studied most intensively. The catabolic pathways for high-mannose, hybrid, and complex glycans have been established. They are bidirectional with concurrent sequential removal of monosaccharides from the nonreducing end by exoglycosidases and proteolysis and digestion of the carbohydrate-polypeptide linkage at the reducing end. The process is initiated by the removal of any core and peripheral fucose, which is a prerequisite for the action of the peptide N-glycanase aspartylglucosaminidase, which hydrolyzes the glycan-peptide bond. This enzyme also requires free alpha carboxyl and amino groups on the asparagine residue, implying extensive prior proteolysis. The catabolism of O-linked glycans has not been studied so intensively, but many lysosomal glycosidases appear to act on the same linkages whether they are in N- or O-linked glycans, glycosaminoglycans, or glycolipids. The monosaccharides liberated during the breakdown of N- and O-linked glycans are transported across the lysosomal membrane into the cytosol by a combination of diffusion and carrier-mediated transport. Defects in these pathways lead to lysosomal storage diseases. The structures of some of the oligosaccharides that accumulate in these diseases are not digestion intermediates in the lysosomal catabolic pathways but correspond to intermediates in the biosynthetic pathway for N-linked glycans, suggesting another route of delivery of glycans to the lysosome. Incorrectly folded or glycosylated proteins that are rejected by the quality control mechanism are broken down in the ER and cytoplasm and the end product of the cytosolic degradation of N-glycans is delivered to the lysosomes. This route is enhanced in cells actively secreting glycoproteins or producing increased amounts of aberrant glycoproteins. Thus interaction between the lysosome and proteasome is important for the regulation of the biosynthesis and distribution of N-linked glycoproteins. Another example of the extralysosomal function of lysosomal enzymes is the release of lysosomal proteases into the cytosol to initiate the lysosomal pathway of apoptosis.  相似文献   

17.
18.
R Cooper  N Noy  D Zakim 《Biochemistry》1987,26(18):5890-5896
If the uptake of fatty acids by liver is a physical, not a biological, process, then the size and location of the intrahepatic pool of fatty acids can be predicted from uptake rates and thermodynamic data. The purpose of the experiments in this paper was to test the accuracy of this idea. Rat livers were perfused with palmitate bound to albumin, and the total amounts of palmitate removed from the perfusate were measured at 3-s intervals. The intrahepatic pools of palmitate calculated from these data were 13.8 and 23.0 nmol/g of liver at ratios of palmitate/albumin (mol/mol) (afferent side) of 2/1 and 4/1, respectively, in the steady state. The intrahepatic pools of palmitate calculated from the distributions of palmitate between membranes, H2O, albumin, and fatty acid binding protein and the measured first-order rate constants for acyl-CoA ligases in mitochondria and microsomes were 12.1 and 34.6 nmol/g for perfusate ratios of palmitate/albumin of 2/1 and 4/1, in the steady state. Intrahepatic pools of palmitate measured after establishment of a steady-state rate of uptake were 15.0 and 31.8 nmol/g for these ratios of palmitate/albumin of 2/1 and 4/1.  相似文献   

19.
Lysosomal phospholipase A2 (PLA2G15) is a ubiquitous enzyme uniquely characterized by a subcellular localization to the lysosome and late endosome. PLA2G15 has an acidic pH optimum, is calcium independent, and acts as a transacylase in the presence of N-acetyl-sphingosine as an acceptor. Recent studies aided by the delineation of the crystal structure of PLA2G15 have clarified further the catalytic mechanism, sn-1 versus sn-2 specificity, and the basis whereby cationic amphiphilic drugs inhibit its activity. PLA2G15 has recently been shown to hydrolyze short chain oxidized phospholipids which access the catalytic site directly based on their aqueous solubility. Studies on the PLA2G15 null mouse suggest a role for the enzyme in the catabolism of pulmonary surfactant. PLA2G15 may also have a role in host defense and in the processing of lipid antigens for presentation by CD1 proteins. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.  相似文献   

20.
Recent evidence has indicated that the lysosome is able to act as a signaling organelle that senses nutrient availability and generates an adaptive response that is important for cellular homeostasis. We recently discovered another example of lysosomal signaling where lysosomal calcium release activates the master autophagy regulator TFEB via the phosphatase calcineurin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号