首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M F Lecompte  C Dode 《Biochimie》1989,71(1):175-181
The conversion of prothrombin into thrombin occurs at the surface of stimulated platelets. In order to see the influence of gamma-carboxyglutamic acid in the interaction of prothrombin with phospholipid, we investigated the direct interaction of the peptide 1-41 and prothrombin (des 1-44) with phospholipid monolayers of various compositions. Adsorption of the labeled proteins was determined by surface radioactivity measurements. Penetration of the proteins into the lipid layers was inferred from capacitance variation of the monolayer, measured by a.c. polarography. Prothrombin (des 1-44) was found both to adsorb and to penetrate the lipid monolayers, in the presence and in the absence of Ca++. The effects are higher on 100% PS than on 25% PS. This protein was also found to increase the permeability of vesicles containing 25% PS to T1+ ions, in the presence and in the absence of Ca++. Comparison with prothrombin shows that Gla residues are clearly involved in the interaction at 25% PS; nevertheless, the peptide 1-41 does not penetrate. A model of interaction of prothrombin with phospholipid, including both adsorption of prothrombin by Gla residues and its penetration by another domain, is proposed.  相似文献   

2.
Binding of Ca 2+ to normal and dicoumarol-induced prothrombin   总被引:5,自引:0,他引:5  
The Ca2+ binding properties of normal bovine prothrombin have been studied and compared with those of an abnormal bovine prothrombin induced by dicoumarol. The normal prothrombin binds up to 10–12 Ca2+ per mole of protein. The three first Ca2+ were bound to sites which exhibited positive cooperativity. A Ca2+ dependent conformational change was demonstrated during the binding of the first three Ca2+. In contrast with normal prothrombin, the dicoumarol-induced prothrombin had only one high affinity binding site. No ligand-induced conformational change was detected in this prothrombin.  相似文献   

3.
Initial velocities of energy-dependent Ca++ uptake were measured by stopped-flow and dual-wavelength techniques in mitochondria isolated from hearts of rats, guinea pigs, squirrels, pigeons, and frogs. The rate of Ca++ uptake by rat heart mitochondria was 0.05 nmol/mg/s at 5 µM Ca++ and increased sigmoidally to 8 nmol/mg/s at 200 µM Ca++. A Hill plot of the data yields a straight line with slope n of 2, indicating a cooperativity for Ca++ transport in cardiac mitochondria. Comparable rates of Ca++ uptake and sigmoidal plots were obtained with mitochondria from other mammalian hearts. On the other hand, the rates of Ca++ uptake by frog heart mitochondria were higher at any Ca++ concentrations. The half-maximal rate of Ca++ transport was observed at 30, 60, 72, 87, 92 µM Ca++ for cardiac mitochondria from frog, squirrel, pigeon, guinea pig, and rat, respectively. The sigmoidicity and the high apparent Km render mitochondrial Ca++ uptake slow below 10 µM. At these concentrations the rate of Ca++ uptake by cardiac mitochondria in vitro and the amount of mitochondria present in the heart are not consistent with the amount of Ca++ to be sequestered in vivo during heart relaxation. Therefore, it appears that, at least in mammalian hearts, the energy-linked transport of Ca++ by mitochondria is inadequate for regulating the beat-to-beat Ca++ cycle. The results obtained and the proposed cooperativity for mitochondrial Ca++ uptake are discussed in terms of physiological regulation of intracellular Ca++ homeostasis in cardiac cells.  相似文献   

4.
M Kurebe 《Life sciences》1979,24(3):275-281
The delipidated Ca++-ATPase prepared from intestinal brush border membranes showed a higher activity of Ca++-independent ATPase, a lower Km value for ATP and a higher Km value for Ca++ than its original membrane Ca++-ATPase. The addition of phosphatidylcholine re-activated the delipidated Ca++-ATPase to approximately 89 % of its original membrane Ca++-ATPase activity but did not restore the affinity for Ca++. This phospholipid raised the Km value for ATP but had little effect on the Km value for Ca++. Palmitic acid elevated the Km value for Ca++ but did not change the Km value for ATP. Kinetic analyses of these data suggest that the hydrocarbon chain of phosphatidylcholine is an important rate-limiting factor for the access of Ca++ to the enzyme and the polar head groups of phosphorylcholine and ester bond may be the factor for the access of ATP.  相似文献   

5.
Sarcoplasmic reticulum fragments (S.R.F.) were isolated from skeletal and heart muscles. These fragments were found to take up Ca++ very actively from media. When monophasic square waves were passed through the S.R.F. suspension, the Ca++ uptake by S.R.F. was decreased. When the suspension was stimulated electrically after the Ca++ was taken up by S.R.F., the initiation and the cessation of the stimulation were followed by the release and re-uptake of Ca++ by S.R.F., respectively. The degree of inhibition of the Ca++ uptake as well as of the Ca++ release by electrical stimulation was dependent on the voltage and the frequency of stimulation. The presence of inorganic phosphate or oxalate modified the influence of electrical stimulation on the release and the uptake of Ca++ by S.R.F. Attempts were made to observe the release of Ca++ by electrical stimulation from unfractionated sarcoplasmic reticulum remaining in myofibers, and the interaction of the released Ca++ with myofibrils in vitro. For this purpose, the glycerol-extracted fiber was selected as a muscle model, since it contains both sarcoplasmic reticulum and myofibrils. It was found that electrical stimulation of skeletal and heart glycerol-extracted fibers resulted in the contraction of fibers. It appeared that the contraction of glycerol fibers by electrical stimulation was caused by the Ca++ release from sarcoplasmic reticulum by stimulation.  相似文献   

6.
The hydrophobic omega-loop within the prothrombin gamma-carboxyglutamic acid-rich (Gla) domain is important in membrane binding. The role of this region in membrane binding was investigated using a synthetic peptide, PT-(1-46)F4W, which includes the N-terminal 46 residues of human prothrombin with Phe-4 replaced by Trp providing a fluorescent probe. PT-(1-46)F4W and PT-(1-46) bind calcium ions and phospholipid membranes, and inhibit the prothrombinase complex. PT-(1-46)F4W, but not PT-(1-46), exhibits a blue shift (5 nm) and red-edge excitation shift (28 nm) in the presence of phosphatidylserine (PS)-containing vesicles, suggesting Trp-4 is located within the motionally restricted membrane interfacial region. PS-containing vesicles protect PT-(1-46)F4W, but not PT-(1-46), fluorescence from potassium iodide-induced quenching. Stern-Volmer analysis of the quenching of PT-(1-46)F4W in the presence and absence of 80% phosphatidylcholine/20% PS vesicles suggested that Trp-4 is positioned within the membrane and protected from aqueous quenching agents whereas Trp-41 remains solvent-accessible in the presence of PS-containing vesicles. Fluorescence quenching of membrane-bound PT-(1-46)F4W is optimal with 7- and 10-doxyl-labeled lipids, indicating that Trp-4 is inserted 5 to 7 A into the bilayer. This report demonstrates that the omega-loop region of prothrombin specifically interacts with PS-containing membranes within the interfacial membrane region.  相似文献   

7.
Although hepatocellular carcinoma (HCC) cells are more resistant to anoxic injury than normal hepatocytes, the mechanisms responsible for this differential sensitivity remain obscure. Because enhanced calpain protease activity contributes to hepatocyte necrosis, we tested the hypothesis that HCC cells resist anoxia by preventing calpain activation. Cell viability in two rat HCC cell lines (N1S1 and McA-RH7777 cells) was fourfold greater compared to rat hepatocytes after 4 h of anoxia. Although calpain activity increased twofold in rat hepatocytes during anoxia, no increase in calpain activity occurred in HCC cells. Western and Northern blot analysis revealed greater or equivalent expression of calpains and calpastatin in HCC cells compared to hepatocytes. Because increases in cytosolic free Ca++ (Cai++) and phospholipid degradation products regulate calpains in vitro, we measured Cai++ and phospholipid degradation. Ca++i did not change in any cell types during 60 min of anoxia. In contrast, phospholipid degradation was fourfold greater in hepatocytes compared to HCC cells. Melittin, a phospholipase A2 activator, increased calpain activity and cell necrosis in all cell types; melittin-induced cell necrosis was ameliorated by a calpain protease inhibitor. In summary, these data demonstrate for the first time 1) calpain activation without a measureable increase in Ca++i, 2) phospholipase-mediated calpain activation in hepatocytes and HCC cells, and 3) the adaptive mechanism responsible for the resistance of HCC cells to anoxia—an inhibition of phospholipid-mediated calpain activation. Interruption of phospholipase-mediated calpain activation may be a therapeutic strategy for preventing anoxic cell injury. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Human lung fibroblasts (W138) can be brought to a quiescent state by removal of serum from the medium or by lowering of the extracellular Ca++. Upon return of Ca++ or serum, the cells enter the G1 phase and progress to S within 15–18 hours. Since multiple G1 phase blocks have been demonstrated, we wished to determine whether the Ca++ and serum block were equivalent since previous data suggested that these two medium components may act at a common point in the initiation of proliferation. We have evaluated the membrane transport of 86Rb, 3-O-methylglucose, AIB, and cycloleucine following stimulation of quiescent cells by Ca++ or serum. Serum stimulation results in large increases in the influx of all the substances tested. These increases are prevented if Ca++ is absent upon serum stimulation or they are rapidly diminished following Ca++ removal. In contrast, Ca++ stimulation of Ca++-deprived cells causes little or no enhancement of any of the transport systems, yet the cells progress to S phase in a manner similar to serum-stimulated cells. These results indicate that the Ca++ and serum G0 or G1 block are not equivalent and that the serum-induced change in transport of these components does not appear necessary for successful G1 phase progression. Furthermore, the data suggest that the sequence in which Ca++ or serum are presented to the cells alters the ability of Ca++ to modulate the transport systems. Quiescent cells which are exposed to Ca++ prior to serum possess a Ca++ modulation of several transport systems. Cells which are exposed to Ca++ subsequent to serum do not appear to possess this Ca++ regulation.  相似文献   

9.
G B Frank 《Life sciences》1978,22(12):1077-1082
In experiments using preparations containing 1, 2, or 3 twitch fibers dissected from the semitendinosus muscle, the twitch was eliminated or greatly reduced (i.e., <10% of control) when the preparations were exposed for < 10 min to a OCa++, bicarbonate-buffered Ringer's solution (37 out of 41 experiments). Replacing the bicarbonate buffer by a tris buffer delayed the loss of the twitch in OCa++ solutions. An even greater delay was produced by substituting a phosphate buffer for the bicarbonate. In 7 out of 12 experiments, twitches of control size or larger continued for 8 to 18 min in a OCa++, phosphate-buffered solution; in the other 5 experiments the twitch was reduced or eliminated < 8 min. The loss of the twitch takes much longer than required for removal of extracellular Ca++ ions from the t-tubules and much shorter than required for reduction of the sarcoplasmic reticular stores of Ca++. The results support the ‘trigger Ca++’ hypothesis which proposes that t-tubular membrane-bound Ca++ ions play an essential role in excitation-contraction coupling.  相似文献   

10.
To study the specific role of gamma-carboxyglutamic acid (Gla) residues in prothrombin, we have isolated a series of partially carboxylated prothrombin variants from a patient with a hereditary defect in vitamin K-dependent carboxylation (Goldsmith, G. H., Pence, R. E., Ratnoff, O. D., Adelstein, D. A., and Furie, B. (1982) J. Clin. Invest. 69, 1253-1260). The three variant prothrombins, purified by DEAE-Sephacel, immunoaffinity chromatography, and preparative gel electrophoresis, were indistinguishable from prothrombin in molecular weight, amino acid composition, and NH2-terminal amino acid sequence, with the exception of Gla residues. Variant prothrombin 1, with 8 Gla residues, had 66% of the coagulant activity of prothrombin, one high affinity metal-binding site (Kd = 15 nM), and three lower affinity sites (Kd = 2.7 microM); prothrombin contained two high affinity (36 nM) and four lower affinity sites (Kd = 1 microM). Ca(II) induced a 23% decrease in the intrinsic fluorescence of variant prothrombin 1 fragment 1, compared to a 35% decrease in that of prothrombin fragment 1. The phospholipid binding activity of variant prothrombin 1 was 44% that of prothrombin. Variant prothrombin 2 and variant prothrombin 3, with 4 and 6 Gla residues, respectively, had about 5% of prothrombin coagulant activity and a single high affinity and two lower affinity metal-binding sites and exhibited no phospholipid binding activity. Variant prothrombin 3 fragment 1 and variant prothrombin 2 fragment 1 demonstrated 18 and 13% of Ca(II)-induced fluorescence quenching, respectively. Abnormal prothrombin, with 1 Gla residue, had 8% of prothrombin coagulant activity, a single lower affinity (1 microM) metal-binding site, and 13% Ca(II)-induced fluorescence quenching of the fragment 1 species and did not bind to phospholipid. These results indicate that Gla residues define the metal binding properties of prothrombin. Most, if not all, of the Gla residues are required for complete prothrombin function, and the prothrombin coagulant activity correlates to the phospholipid binding activity of the prothrombin species.  相似文献   

11.
Summary Pure lateral (L) cilia may be separated from the remaining (R) cilia types ofMytilus edulis gill by serotonin activation after hypertonic shock. The two classes of cilia were permeabilized with 0.012% Triton X-100 and incubated with32P-labeled ATP at low Ca++ (10–7 M), where L cilia beat, or in high Ca++ (2–20 M), where L cilia arrest but R cilia are active. The labeled cilia were separated into axoneme and membrane-matrix fractions by detergent extraction, subjected to SDS-PAGE on 5–15% gels, and autoradio-graphed. Neither cilia type undergoes Ca++-dependent phosphorylation of specific proteins, suggesting that neither Ca++-induced arrest in L cilia nor the Ca++ activation of other cilia is phosphorylation-dependent. However, lipid phosphorylation in L cilia is highly Ca++-dependent. Identified by thin-layer chromatography, the phospholipid that is phosphorylated in a Ca++-dependent manner is phosphatidylinositol 4-phosphate (PIP), yielding the 4,5-bisphosphate (PIP2). PIP2 increases at least 3-fold under Ca++-arrest conditions.Aequipecten gill lateral cilia, which require higher Ca++ levels for arrest, show even more striking changes. In both cases, the effect is maximal at micromolar Ca++ levels. Phosphorylation of other lipids is Ca++-independent. In the Ca++-insensitive or activated R cilia, PIP2 levels are intermediate, increasing only marginally with increased [Ca++]. The formation of PIP2 in response to Ca++, as opposed to its breakdown to form inositol 1,4,5-trisphosphate and diacylglycerol, may be characteristic of a Ca++ transport system. Mechanically sensitive, the L cilia arrest as a consequence of an inward flux of Ca++ ions, acting directly on the axoneme. After Ca++-induced arrest, the formation of PIP2 may be involved in sequestering Ca++ or in augmenting Ca++ pump activity, thus reducing Ca++ levels so that motility may resume quickly.  相似文献   

12.
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+]i in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the α-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.  相似文献   

13.
Summary The effects produced by the detergents Triton X-100, sodium dodecylsulphate and sodium cholate on sarcoplasmic reticulum vesicles have been comparatively studied. In all cases, maximal effects are found 5 min after detergent addition. Triton X-100 and SDS are approximately ten times more effective than cholate in protein and phospholipid solubilization. Both Triton X-100 and SDS maintain Ca++ accumulation in SR vesicles at detergent concentrations below 10–3 M; higher concentrations cause a strong inhibition. On the other hand, cholate produces a gradual inhibition of Ca++ accumulation in the concentration range between 10–4 M and 2.5 × 10–2 M. Triton X-100 and SDS produce a gradual solubilization of the specific Ca++-ATPase activity up to a 10–3 M detergent concentration, above which a strong inactivation occurs, while the enzyme solubilization increases with the presence of cholate in the whole concentration range under study. The different behaviour of sodium cholate, when compared to SDS or Triton X-100, is discussed in relation to the surfactant molecular structures. The possibility of membrane lysis and reassembly in the presence of some detergents is also considered.Abbreviations SR sarcoplasmic reticulum - SDS sodium dodecylsulphate - DTT dithiothreitol - EGTA ethyleneglycoltetraacetate - PEP phosphoenolpyruvate  相似文献   

14.
1-0-Hexadecanoyl [U-14C]ethanediol can serve as substrate in the formation of 1-0-hexadecanoyl ethanediol 2-phosphorylcholine by particulate cell-free preparations from rat liver. Catalytic activity is largely associated with the microsomal fraction. The reaction requires CDPcholine and Mg++. Phosphatidylcholine cannot substitute for CDPcholine, but Mn++ is almost as effective as Mg++. Ca++ inhibits the reaction. The acyl ethanediol phosphorylcholine produced was identified by repeated cochromotography with authentic diol phospholipid to constant specific radioactivity, and by enzymatic and chemical degradations.  相似文献   

15.
Summary We have measured the effects of the carboxylic Ca++ ionophore A23187 on muscle tension, resting potential and 3-O-methylglucose efflux. The ionophore produces an increase in tension that is dependent on external Ca++ concentration since (a) the contracture was blocked by removing external Ca++ and (b) its size was increased by raising outside Ca++. Neither resting potential nor resting and insulin-stimulated sugar efflux were modified by the ionophore. These data imply that the action of insulin is not mediated by increasing cytoplasmic [Ca++]. Additional support for this conclusion was obtained by testing the effects of caffeine on sugar efflux. This agent, which releases Ca++ from the reticulum, did not increase resting sugar efflux and inhibited the insulin-stimulated efflux. Incubation in solutions containing butyrated derivatives of cyclic AMP or cyclic GMP plus theophylline did not modify the effects of insulin on sugar efflux. Evidence suggesting that our experimental conditions increased the cytoplasmic cyclic AMP activity was obtained.  相似文献   

16.
Isolated human red blood cell membrane fragments (RBCMF) were found to take up Ca++ in the presence of ATP.1 This ATP-dependent Ca++ uptake by RBCMF appears to be the manifestation of an active Ca++ transport mechanism in the red cell membrane reported previously (Schatzmann, 1966; Lee and Shin, 1969). The influences of altering experimental conditions on Ca++-stimulated Mg++ ATPase (Ca++ ATPase) and Ca++ uptake of RBCMF were studied. It was found that pretreatment of RBCMF at 50°C abolished both Ca++ ATPase and Ca++ uptake. Pretreatment of RBCMF with phospholipases A and C decreased both Ca++ ATPase and Ca++ uptake, whereas pretreatment with phospholipase D did not significantly alter either Ca++ ATPase or Ca++ uptake. Both Ca++ ATPase and Ca++ uptake had ATP specificity, similar optimum pH's, and optimum incubation temperatures. From these results, it was concluded that Ca++ uptake is intimately linked to Ca++ ATPase.  相似文献   

17.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

18.
Sheep or guinea pig antisera against the purified Ca++ transport ATPase of sarcoplasmic reticulum inhibit Ca++ transport due to a complement-dependent damage of the membrane, which causes massive leakage of Ca++. The Ca++-activated ATPase activity is only slightly affected even at ten times higher antibody concentration than that required for inhibition of Ca++ transport. Antibodies prepared against the Ca++ binding protein (C1 protein) have no influence upon either ATPase activity or Ca++ transport and ferritin-labeled anti-C1 antibodies do not bind to microsomes.  相似文献   

19.
Primary cultures of bone cells and skin fibroblasts were examined for their Ca++ content, intracellular distribution and Ca++ fluxes. Kinetic analysis of 45Ca++ efflux curves indicated the presence of three exchangeable Ca++ compartments which turned over at different rates: a “very fast turnover” (S1), a “fast turnover” (S2), and a “slow turnover” Ca++ pool (S3). S1 was taken to represent extracellular membrane-bound Ca++, S2 represented cytosolic Ca++, and S3 was taken to represent Ca++ sequestered in some intracellular organelles, probably the mitochondria. Bone cells contained about twice the amount of Ca++ as compared with cultured fibroblasts. Most of this extra Ca++ was localized in the “slow turnover” intracellular Ca++ pool (S3). Serum activation caused the following changes in the amount, distribution, and fluxes of Ca++: (1) In both types of cells serum caused an increase in the amount of Ca++ in the “very fast turnover” Ca++ pool, and an increase in the rate constant of 45Ca++ efflux from this pool, indicating a decrease in the strength of Ca++ binding to ligands on cell membranes. (2) In fibroblasts, serum activation also caused a marked decrease in the content of Ca++ in the “slow turnover” Ca++ pool (S3), an increase in the rates of Ca++ efflux from the cells to the medium, and from S3 to S2, as well as a decrease in the rate of influx into S3. (3) In bone cells the amount of Ca++ in S3 remained high in “serum activated” cells, the rate of efflux from S3 to S2 increased, and the rate of influx into S3 also increased. The rate of efflux from the cells to the medium did not change. The results suggest specific properties of bone cells with regard to cell Ca++ presumably connected with their differentiation. Following serum activation we investigated the time course of changes in the amount of exchangeable Ca++ in bone cells and fibroblasts, in parallel with measurements of 3H-thymidine incorporation and cell numbers. Serum activation caused a rapid decrease in the content of cell Ca++ which was followed by a biphasic increase lasting until cell division.  相似文献   

20.
Summary Light-induced degradation of photoreceptor membrane in the crayfish was studied by quantitative light and electron microscopy. The production of lysosomal organelles within the photoreceptor cells was enhanced by presenting the light stimulus intermittently (i.e., flicker) or by doubling its intensity. The enhancement was seen primarily as an increase in the number and size of multivesicular bodies. As these stimulus conditions are likely to facilitate intracellular Ca++ fluxes, the results are compatibl with recent speculations that Ca++ ions may regulate membrane degradation. To test the possibility that Ca++ acts as a signal coupling receptor stimulation with membrane loss, retinas were incubated in the dark with the ionophore A23187 in the presence or absence of external Ca++. The results demonstrate that A23187 produces a Ca++-dependent increase in lysosomal organelles, predominantly multivesicular bodies. These data are consistent with a role for intracellular Ca++ in the degradative process; however, the exact locus of the effect is unclear.Supported by a grant (BNS 8004587) from the National Science Foundation to G.S.H. The authors gratefully acknowledge the helpful discussions and expert technical assistance of Thomas R. Tokarski  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号