首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Infection of Epstein-Barr virus-negative human B-lymphoma cell lines with the fully transforming B95.8 Epstein-Barr virus strain was associated with complete virus latent gene expression and a change in the cell surface and growth phenotype toward that of in vitro-transformed lymphoblastoid cell lines. In contrast, the cells infected with the P3HR1 Epstein-Barr virus strain, a deletion mutant that cannot encode Epstein-Barr nuclear antigen 2 (EBNA2) or a full-length EBNA-LP, expressed EBNAs1, 3a, 3b, and 3c but were negative for the latent membrane protein (LMP) and showed no change in cellular phenotype. This suggests that EBNA2 and/or EBNA-LP may be required for subsequent expression of LMP in Epstein-Barr virus-infected B cells. Recombinant vectors capable of expressing the B95.8 EBNA2A protein were introduced by electroporation into two P3HR1-converted B-lymphoma cell lines, BL30/P3 and BL41/P3. In both cases, stable expression of EBNA2A was accompanied by activation of LMP expression from the resident P3HR1 genome; control transfectants that did not express the EBNA2A protein never showed induction of LMP. In further experiments, a recombinant vector capable of expressing the full-length B95.8 EBNA-LP was introduced into the same target lines. Strong EBNA-LP expression was consistently observed in the transfected clones but was never accompanied by induction of LMP. The EBNA2A gene transfectants expressing EBNA2A and LMP showed a dramatic change in cell surface and growth phenotype toward a pattern like that of lymphoblastoid cell lines; some but not all of these changes could be reproduced in the absence of EBNA2A by transfection of P3HR1-converted cell lines with a recombinant vector expressing LMP. These studies suggest that EBNA2 plays an important dual role in the process of B-cell activation to the lymphoblastoid phenotype; the protein can have a direct effect upon cellular gene expression and is also involved in activating the expression of a second virus-encoded effector protein, LMP.  相似文献   

3.
4.
Epstein-Barr virus (EBV) isolates show sequence divergence in the BamHI YH region of the genome which encodes the nuclear antigen EBNA 2, a protein thought to be involved in the initiation of virus-induced B-cell transformation; type A isolates (such as B95-8 EBV) encode a 82- to 87-kilodalton EBNA 2A protein, whereas type B isolates (such as AG876 EBV) encode an antigenically distinct 75-kilodalton EBNA 2B protein. In the present work 12 type A isolates and 8 type B isolates have been compared for their ability to transform resting human B cells in vitro into permanent lymphoblastoid cell lines. Although the kinetics of initial focus formation was not markedly dependent upon the EBNA 2 type of the transforming virus, on subsequent passage type A virus-transformed cells (type A transformants) yielded cell lines much more readily than did type B transformants. Direct comparison between the two types of transformant revealed clear differences in several aspects of growth phenotype. Compared with type A transformants, cell lines established with type B virus isolates consistently displayed an unusual growth pattern with poor survival of individual cells shed from lymphoblastoid clumps, a lower growth rate and a greater sensitivity to seeding at limiting dilutions, and a significantly lower saturation density that could not be corrected by supplementation of the medium with culture supernatant containing B-cell growth factors. This is the first direct evidence that, in EBV-transformed B-cell lines, the EBNA 2 protein plays a continuing role in determining the cellular growth phenotype.  相似文献   

5.
Transformation-competent, replication-defective Epstein-Barr virus (EBV) recombinants which are deleted for 18 kbp of DNA encoding the largest EBNA intron and for 58 kbp of DNA between the EBNA1 and LMP1 genes were constructed. These recombinants were made by transfecting three overlapping cosmid-cloned EBV DNA fragments into cells infected with a lytic replication-competent but transformation-defective EBV (P3HR-1 strain) and were identified by clonal transformation of primary B lymphocytes into lymphoblastoid cell lines. One-third of the lymphoblastoid cell lines were infected with recombinants which had both deletions and carried the EBNA2 and EBNA3 genes from the transfected EBV DNA and therefore are composed mostly or entirely from the transfected EBV DNA fragments. The deleted DNA is absent from cells infected with most of these recombinants, as demonstrated by Southern blot and sensitive PCR analyses for eight different sites within the deleted regions. Cell growth and EBNA, LMP, and BZLF1 gene expression in lymphoblastoid cell lines infected with these recombinants are similar to those in cells infected with wild-type EBV recombinants. Together with previous data, these experiments reduce the complexity of the EBV DNA necessary for transformation of primary B lymphocytes to 64 kbp. The approach should be useful for molecular genetic analyses of transforming EBV genes or for the insertion of heterologous fragments into transforming EBV genomes.  相似文献   

6.
The Epstein-Barr virus (EBV) nuclear antigens EBNA 3a, 3b, and 3c have recently been mapped to adjacent reading frames in the BamHI L and E fragments of the B95.8 EBV genome. We studied by immunoblotting the expression of the family of EBNA 3 proteins in a panel of 20 EBV-transformed lymphoblastoid cell lines (LCLs) carrying either type A (EBNA 2A-encoding) or type B (EBNA 2B-encoding) virus isolates. Certain human sera from donors naturally infected with type A isolates detected the EBNA 3a, 3b, and 3c proteins in all type A virus-transformed LCLs (with a single exception in which EBNA 3b was not detected) but detected only EBNA 3a in LCLs carrying type B isolates. These results were confirmed with human and murine antibodies with specific reactivity against sequences of the type A EBNA 3a, 3b, or 3c expressed in bacterial fusion proteins. Conversely, selected human sera from donors naturally infected with type B strains of EBV identified the EBNA 3a encoded by both types of isolates plus two novel EBNAs present only in type B, and not in type A, virus-transformed LCLs; these novel proteins appear to be the type B homologs of EBNA 3b and 3c. The distinction between type A and type B EBV isolates therefore extends beyond the EBNA 2 gene to the EBNA 3 family of proteins. This has important implications with respect to the evolutionary origin of these two EBV types and also places in a new light recent studies which identified differences between type A and type B transformants in terms of growth phenotype (A. B. Rickinson, L. S. Young, and M. Rowe, J. Virol. 61:1310-1317, 1987) and of detection by EBV-specific cytotoxic T cells (D. J. Moss, I. S. Misko, S. R. Burrows, K. Burman, R. McCarthy, and T. B. Sculley, Nature [London] 331:719-721, 1988).  相似文献   

7.
8.
9.
10.
Human immunodeficiency virus type 1 (HIV-1)-infected subjects show a high incidence of Epstein-Barr virus (EBV) infection. This suggests that EBV may function as a cofactor that affects HIV-1 activation and may play a major role in the progression of AIDS. To test this hypothesis, we generated two EBV-negative human B-cell lines that stably express the EBNA2 gene of EBV. These EBNA2-positive cell lines were transiently transfected with plasmids that carry either the wild type or deletion mutants of the HIV-1 long terminal repeat (LTR) fused to the chloramphenicol acetyltransferase (CAT) gene. There was a consistently higher HIV-1 LTR activation in EBNA2-expressing cells than in control cells, which suggested that EBNA2 proteins could activate the HIV-1 promoter, possibly by inducing nuclear factors binding to HIV-1 cis-regulatory sequences. To test this possibility, we used CAT-based plasmids carrying deletions of the NF-kappa B (pNFA-CAT), Sp1 (pSpA-CAT), or TAR (pTAR-CAT) region of the HIV-1 LTR and retardation assays in which nuclear proteins from EBNA2-expressing cells were challenged with oligonucleotides encompassing the NF-kappa B or Sp1 region of the HIV-1 LTR. We found that both the NF-kappa B and the Sp1 sites of the HIV-1 LTR are necessary for EBNA2 transactivation and that increased expression resulted from the induction of NF-kappa B-like factors. Moreover, experiments with the TAR-deleted pTAR-CAT and with the tat-expressing pAR-TAT plasmids indicated that endogenous Tat-like proteins could participate in EBNA2-mediated activation of the HIV-1 LTR and that EBNA2 proteins can synergize with the viral tat transactivator. Transfection experiments with plasmids expressing the EBNA1, EBNA3, and EBNALP genes did not cause a significant HIV-1 LTR activation. Thus, it appears that among the latent EBV genes tested, EBNA2 was the only EBV gene active on the HIV-1 LTR. The transactivation function of EBNA2 was also observed in the HeLa epithelial cell line, which suggests that EBV and HIV-1 infection of non-B cells may result in HIV-1 promoter activation. Therefore, a specific gene product of EBV, EBNA2, can transactivate HIV-1 and possibly contribute to the clinical progression of AIDS.  相似文献   

11.
12.
13.
A set of B-cell activation molecules, including the Epstein-Barr virus (EBV) receptor CR2 (CD21) and the B-cell activation antigen CD23 (Blast2/Fc epsilon RII), is turned on by infecting EBV-negative B-lymphoma cell lines with immortalizing strains of the viruslike B95-8 (BL/B95 cells). This up regulation may represent one of the mechanisms involved in EBV-mediated B-cell immortalization. The P3HR1 nonimmortalizing strain of the virus, which is deleted for the entire Epstein-Barr nuclear antigen 2 (EBNA2) protein open reading frame, is incapable of inducing the expression of CR2 and CD23, suggesting a crucial role for EBNA2 in the activation of these molecules. In addition, lymphoma cells containing the P3HR1 genome (BL/P3HR1 cells) do not express the viral latent membrane protein (LMP), which is regularly expressed in cells infected with immortalizing viral strains. Using electroporation, we have transfected the EBNA2 gene cloned in an episomal vector into BL/P3HR1 cells and have obtained cell clones that stably express the EBNA2 protein. In these clones, EBNA2 expression was associated with an increased amount of CR2 and CD23 steady-state RNAs. Of the three species of CD23 mRNAs described, the Fc epsilon RIIa species was preferentially expressed in these EBNA2-expressing clones. An increased cell surface expression of CR2 but not of CD23 was observed, and the soluble form of CD23 molecule (SCD23) was released. We were, however, not able to detect any expression of LMP in these cell clones. These data demonstrate that EBNA2 gene is able to complement P3HR1 virus latent functions to induce the activation of CR2 and CD23 expression, and they emphasize the role of EBNA2 protein in the modulation of cellular gene implicated in B-cell proliferation and hence in EBV-mediated B-cell immortalization. Nevertheless, EBNA2 expression in BL/P3HR1 cells is not able to restore the level of CR2 and CD23 expression observed in BL/B95 cells, suggesting that other cellular or viral proteins may also have an important role in the activation of these molecules: the viral LMP seems to be a good candidate.  相似文献   

14.
15.
Recently established Epstein-Barr virus (EBV)-positive Burkitt's lymphoma (BL) cell lines, carrying chromosomal translocations indicative of their malignant origin, have been monitored for their degree of in vitro progression towards a more 'lymphoblastoid' cell surface phenotype and growth pattern, and for their expression of three EBV latent gene products which are constitutively present in all virus-transformed normal lymphoblastoid cell lines (LCLs). BL cell lines which stably retained the original tumour biopsy phenotype on serial passage were all positive for the nuclear antigen EBNA 1 but did not express detectable amounts of two other 'transforming' proteins, EBNA 2 and the latent membrane protein (LMP). This novel pattern of EBV gene expression was also observed on direct analysis of BL biopsy tissue. All three viral proteins became detectable, however, in BL cell lines which had progressed towards a more LCL-like phenotype in vitro. This work establishes a link between B cell phenotype and the accompanying pattern of EBV latent gene expression, and identifies a novel type of EBV:cell interaction which may be unique to BL cells.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号