首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sulfate-reducing bacteria in littoral sediment of Lake Constance   总被引:6,自引:0,他引:6  
Abstract The viable population of sulfate-reducing bacteria (SRB) in littoral sediments of Lake Constance was investigated using enrichment and enumeration techniques. Enrichment studies established that most types of SRB grew best in media with low salt concentrations (max. 0.4 g Cl/1), consistent with the low salinity of the freshwater habitat. Enumerations were based on an adequate medium with the following electron donors: H2, lactate, acetate, propionate, butyrate, caprylate, succinate, benzoate, or S2O32− for thiosulfate-disproportionating bacteria. Cultures were incubated for 6 weeks to obtain maximum counts. A maximum cell density of 6.3 × 106 cells per ml sediment was estimated, which is the highest number of SRB ever reported for anoxic sediments. A comparison with measured sulfate reduction rates showed that the enumeration techniques were about 10–100-fold more efficient than those previously used. The population of SRB had a characteristic structure consisting of 87.7% H2-utilizing SRB (physiologically resembling the classical Desulfovibrio species); 12.0% propionate utilizers (tentatively identified as Desulfobulbus species); 0.3% long chain fatty acid-oxidizing Desulfovibrio sapovorans species. Acetate-utilizing SRB ( Desulfotomaculum acetoxidans ) constituted ≤ 0.05% of the total estimated population. Moreover, the latter species was only present as inactive spores. Benzoate-degrading SRB were not detected.  相似文献   

3.
4.
Abstract In the profundal sediment ot Lake Constance (143 m depth) the temperature is constant at 4 °C. Despite the constant temperature, CH4 concentrations changed with season between about 120 μM in winter and about 750 μM in summer, measured down to 30 cm depth. The acetate concentration profiles also varied between seasons. In summer, acetate concentration reached a maximum at about 100 μM in 2 or 4 cm depth. In winter, maximal concentrations of about 5 μM were observed over the entire depth. Input of organic material in late spring may be the reason for the seasonal change of both compounds. To simulate such a sedimentation event, intact sediment cores were covered with suspensions of Porphyridium aerugenium or Synechococcus sp. The addition of the phytoplankton material resulted in a drastic increase of acetate concentrations with a maximum at 2 cm depth, similar to in situ acetate concentrations measured in summer. The same applies for CH4 for which increased concentrations were observed down to 6 cm depth. H2 concentrations, on the other hand, showed no distinct increase. Treatment of intact sediment cores with 14C-labeled Synechococcus cells resulted in the formation of 14C-acetate, 14CH4 and 14CO2. Maximum concentrations of 14CH4 were found at 4 cm depth, i.e. just above the depth to which 14C-acetate penetrated. The results show that phytoplankton blooms may cause a seasonal variation of acetate and CH4 in profundal sediments of deep lakes despite the constant low temperature. They also indicate that acetate is the dominant substrate for methanogenic bacteria in the profundal sediments of Lake Constance.  相似文献   

5.
6.
7.
8.
Abstract Bio- and geohopanoid distributions with depth from the upper sediment layers (25 cm) of Lake Constance (Germany) indicate that hopanoid producing bacteria were present in significant amounts either in the water column above the sediment or in the top layer of the sediment. Dihomohopan-32-ol is shown to be representative of the total hopanoid content of the sediment and its distribution is tentatively correlated with the eutrophication process which has occurred in Lake Constance over the past 50 years.  相似文献   

9.
Sedimentation resulting from riparian deforestation has a wide range of detrimental effects on aquatic biodiversity, but predicting the full consequences of such disturbances requires an understanding of the ecosystem’s key functional components. We investigated the ecology and response to sedimentation of the diverse, endemic freshwater crabs of Lake Tanganyika, which may occupy important positions in littoral foodwebs. Our surveys revealed crab distribution patterns to be patchy, and that crabs can be locally abundant (0–28 individuals m−2). Crab densities decreased with depth and the dry mass of crab assemblages ranged from 0.0 to 117.7 g m−2. Comparisons among sites revealed significant effects of sedimentation on crab assemblage evenness, but provided no evidence that sedimentation has altered densities, incidence or species richness. The resilience of crabs to sedimentation might be related to their intraspecific dietary breadth. Stable isotope data (δ13C and δ15N) from crabs and their potential food resources indicated differences in trophic roles among endemic crab species. Overall, crabs occupy higher trophic positions than most other invertebrates, and they draw upon both benthic and planktonic energy pathways. The high biomass and top-predator status of some crab species suggests the potential for cascading effects on organisms lower in the food web.  相似文献   

10.
Rice straw was treated with a mixed solution of acetic acid and propionic acid to enhance its biodegradability. The effect of acid concentration, pretreatment time, and the ratio of solid to liquid on the delignification performance of rice straw were investigated. It was found that the optimal conditions for hydrolysis were 0.75 mol/L acid concentration, 2 h pretreatment time and 1:20 solid to liquid ratio. Batch methane fermentation of untreated rice straw, pretreated rice straw, and the hydrolysates (the liquid fraction) of pretreatment were conducted at 35 °C for 30 days, and the results indicated that methane production of rice straw can be enhanced by dilute organic acid pretreatment. Moreover, most of the acid in hydrolysates can also be converted into methane gas.  相似文献   

11.
东湖沿岸带底栖藻类群落的时空变化   总被引:3,自引:0,他引:3  
武汉东湖是一个浅水富营养湖泊,其沿岸带底栖藻类群落的季节分布特征明显,夏季的优势种群是一些体积很小的硅藻类曲壳藻(Achnanthes spp.),其他大部分季节是绿藻门的团集刚毛藻(Cladophora glomerata)和硅藻门的变异直链藻(Melosira varians)。不同样点间的底栖藻类现存量差异不显著,但优势种类不同,以团集刚毛藻为优势的绿藻在处于中富营养区域的磨山样点比例最高,以变异直链藻为优势种的硅藻在严重富营养化的水果湖样点中比例最高。底栖藻类月平均现存量(以叶绿素a计)的时间变化格局为夏季最低(41.5μg/cm2),逐渐增加到秋、冬季节的最高峰值(55.3μg/cm2)。造成东湖夏季底栖藻类现存量低的原因是雨季水体环境的不稳定性和水位升高造成的低光照。不同样点间的chlb、chlc及chlb/a、chlc/a值具有显著差异,分析这种差异显示:在东湖的富营养化条件下,过渡的富营养化能增加底栖藻类群落中硅藻的比例,却降低了绿藻的比例;不同环境条件下的底栖藻类群落结构具有特异性,分析底栖藻类群落结构可以用来评价水环境健康状况。东湖底栖藻类现存量的季节变化规律与浮游藻类不同,它和水温成显著的负相关,但温度和浮游藻类并不是影响东湖沿岸带底栖藻类生物量变化的直接因子。团集刚毛藻等底栖丝状藻类给各种底栖动物提供了食物和栖息环境,在东湖生态系统中具有重要的作用和功能。  相似文献   

12.
Abstract Acetate turnover was measured in slurries of anoxic methanogenic paddy soil after addition of carrier-free [2-14C]-acetate. Acetate concentrations stayed fairly constant for about 1–2 days indicating steady state between production and consumption reactions. Depending on the experiment, acetate concentrations were between 100 and 3000 μM. Turnover rates were determined from the logarithmic decrease of [2-14C]-acetate or from the accumulation of acetate in the presence of chloroform resulting in similar values, i.e. 12–13 nmol h−1g−1d.w. soil at 17°C and 36–88 nmol h−1g−1d.w. at 30°C. Acetate consumption was completely inhibited by chloroform. The respiratory index (RI) was < 0.27. Hence, acetate was apparently consumed by methanogenic bacteria. About 80–90% of the CH4 produced originated from the methyl group of acetate. The role of homoacetogenesis for acetate production was studied by measuring the incorporation of radioactive bicarbonate into acetate. In different experiments, CO2 incorporation accounted for fractions of 1–60% of the acetate produced, about 10% being the most likely value for steady-state conditions. The fraction increased at high H2 concentrations and decreased at high acetate concentrations. The rate of H2 production that was required for chemolithotrophic acetate production from CO2 was two orders of magnitude higher than the actually measured rate. Hence, most of the CO2 incorporation into acetate was caused by electron donors other than H2 (e.g., carbohydrates) and/or by exchange reactions.  相似文献   

13.
14.
15.
Abstract Turnover times of radioactive glucose were shorter in paddy soil (4–16 min) than in Lake Constance sediment (18–62 min). In the paddy soil, 65–75% of the radioactive glucose was converted to soluble metabolites. In the sediment, only about 25% of the radioactive glucose was converted to soluble metabolites, the rest to particulate material. In anoxic paddy soil, the degradation pattern of position-labelled glucose was largely consistent with glucose degradation via the Embden-Meyerhof-Parnas (EMP) pathway followed by methanogenic acetate cleavage: CO2 mainly originated from C-3,4, whereas CH4 mainly originated from C-1 and C-6 of glucose. Acetate-carbon originated from C-1, C-2 and C-6 rather than from C-3,4 of glucose. In both paddy soil and Lake Constance sediment acetate and CO2 were the most important early metabolites of radioactive glucose. Other early products included propionate, ethanol/butyrate, succinate, and lactate, but accounted each for less than 1–8% of the glucose utilized. The labelling of propionate by [3,4-14C]glucose suggests that it was mainly produced from glucose or lactate rather than from ethanol. Isopropanol and caproate were also detectable in paddy soil, but were not produced from radioactive glucose. Chloroform inhibited methanogenesis, inhibited the further degradation of radioactive acetate and resulted in the accumulation of H2, however, did not inhibit glucose degradation. Since acetate was the main soluble fermentation product of glucose and was produced at a relatively high molar acetate: CO2 ratio (2.5:1), homoacetogenesis appeared to be the most important glucose fermentation pathway.  相似文献   

16.
Temporal changes of biomass and dominant species in benthic algal communities were investigated in a littoral sand-beach zone in the north basin of Lake Biwa from December 1999 to September 2000. Chlorophyll-a amounts of benthic algal communities per unit area of the sandy sediments rapidly increased from late April to June. Increases in biomass of the benthic algal communities are considered to result from the propagation of filamentous green algae Oedogonium sp. and Spirogyra sp. The cell numbers of filamentous green algae and chlorophyll-a amounts of benthic algal communities at depths of 30 and 50cm at a station protected by a breakwater in May were significantly higher than those of a station exposed directly to wave activity. Thus, the biomass accumulation of the benthic algal communities seems to be regulated strongly by wave disturbance. The development of filamentous green algae may contribute to the increase in biomass of the benthic algal community and to the changes in seasonal patterns of biomass in the sand-beach zone of Lake Biwa. We consider that the development of the filamentous green algal community in the littoral zone of Lake Biwa is the result of eutrophication.  相似文献   

17.
18.
19.
Anoxic wetlands are an important source for the greenhouse gas CH4, much of which is emitted in form of gas bubbles. The conditions for formation of gas bubbles have recently been described by an analytical model, which allows the prediction of fluxes by first physical principles using the knowledge of gas concentration profiles and/or gas production rates. We tested parts of this model by experiments using microcosms of flooded, non-vegetated and homogeneous rice field soil incubated under different gas atmospheres and at different temperatures. In these experiments we determined rates of CH4 and CO2 production, upper boundaries of the bubble zone, gas-filled porosities and vertical profiles of dissolved CH4, CO2 and N2. The results of our experiments confirmed that by knowing only one of the following parameters, i.e. CH4 production, diffusive CH4 flux and depth of upper boundary of bubble zone, the remainder could be predicted from the model. On average, predicted values differed from experimental ones by a factor of 0.4 –2.7, depending on which parameter was taken as an input for the model. It was possible to predict the percentage of gas bubble flux from measured CH4 emission rates under the experimental conditions, which was on the order of 90%. The confrontation of the model with experimental data showed that the effect of the shallow upper oxic layer on bubble formation was negligible and that the CH4 diffusive flux is easily underestimated by experiments lacking sufficient spatial resolution. Therefore, CH4 production rates lower than in our microcosms would allow a more precise test of the model by creating less steep concentration gradients, which, however, would require long incubation times to purge the dissolved N2 from the soil by ebullition and to reach true steady state.  相似文献   

20.
The spatial distribution and seasonal variation in the concentration and carbon isotopic composition of dissolved methane in a river–lake ecosystem were studied in Lake Biwa, Japan, and its tributary rivers. Methane concentrations in all subsystems examined were supersaturated with respect to the atmosphere. The epilimnion showed higher concentrations of dissolved methane than the hypolimnion in the pelagic zone. Peak methane concentrations were observed at the thermocline. The largest amount of methane in the pelagic water column was recorded at the end of a stagnant period, at which the bottom water of the sublittoral zone (30m in depth) exhibited increased methane concentration. Transect observation of dissolved methane revealed three methane peaks at different water depths in the lake, and river water and the sediments in littoral and sublittoral zones were suggested to be the corresponding sources. Water at the river mouth was replete with dissolved oxygen but also contained a high concentration of methane. The present results suggest that river water and littoral sediment are potential sources of dissolved methane in Lake Biwa, and other sources, such as internal waves, are responsible for increased methane in the pelagic zone at the end of stagnant periods. Carbon stable isotope analysis indicated that there were different sources of dissolved methane, although it was difficult to identify the origins due to high variation of the isotopic composition of methane from different sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号