首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sco1 is a conserved essential protein, which has been implicated in the delivery of copper to cytochrome c oxidase, the last enzyme of the electron transport chain. In this study, we show for the first time that the purified C-terminal domain of yeast Sco1 binds one Cu(I)/monomer. X-ray absorption spectroscopy suggests that the Cu(I) is ligated via three ligands, and we show that two cysteines, present in a conserved motif CXXXC, and a conserved histidine are involved in Cu(I) ligation. The mutation of any one of the conserved residues in Sco1 expressed in yeast abrogates the function of Sco1 resulting in a non-functional cytochrome c oxidase complex. Thus, the function of Sco1 correlates with Cu(I) binding. Data obtained from size-exclusion chromatography experiments with mitochondrial lysates suggest that full-length Sco1 may be oligomeric in vivo.  相似文献   

2.
The studies described here were performed to characterize further the plasma membrane associated protein BsSco, which is the product of the gene ypmQ, in Bacillus subtilis. BsSco is a member of the Sco family of proteins found in the inner mitochondrial membrane of yeast and humans and implicated as an accessory protein in the assembly of the Cu(A) site of cytochrome c oxidase. We have cloned the gene expressing BsSco, placed a six-histidine tag on its C-terminus, and over-expressed this protein in B. subtilis. Recombinant BsSco with the his-tag has been purified from Triton X-100-solubilized plasma membranes by nickel metal affinity chromatography. Mass spectral analysis of the purified protein is consistent with processing of BsSco by signal peptidase II removing an N-terminal putative transmembrane sequence to leave an acyl-glyceryl moiety at cysteine residue 19. Antibodies, raised against purified, recombinant BsSco, were used to characterize the timing of the level of native BsSco in batch cultures of wild-type B. subtilis. There is a marked lag in the level of native BsSco, but it does appear prior to cytochrome c oxidase, which is expressed in late stage growth. This work supports a role for BsSco in the assembly of the Cu(A) site of cytochrome c oxidase and its functional relationship to the Sco proteins found in eukaryotic cells.  相似文献   

3.
The solution structure of Sco1 from Bacillus subtilis is the first structure of a protein important in the assembly of cytochrome c oxidase (CcO). The assembly of CcO requires the insertion of multiple cofactors. Sco1 is a conserved protein implicated in formation of the binuclear Cu(A) center.  相似文献   

4.
Members of the Sco protein family are implicated in the assembly of the respiratory complex cytochrome c oxidase. Several possible roles have been proposed for Sco: a copper delivery agent, a site-specific thiol reductase, and an indicator of cellular redox status. Two cysteine residues (C45 and C49) in the sequence CXXXCP and a histidine (H135) approximately 90 residues toward the C-terminus are conserved in Sco from bacteria, yeast, and humans. The soluble domain of Sco has a thioredoxin fold that is suggestive of redox activity for this protein. We have characterized the soluble domain of the Sco protein from Bacillus subtilis (i.e., sBsSco) for its redox reactivity and metal binding capacity. In oxidized sBsSco, the cysteines are present as an intramolecular disulfide. Oxidized sBsSco does not bind metal, but can be reduced in vitro to a metal-binding form. Reduction of the disulfide in sBsSco is accompanied by increased intrinsic fluorescence. The reducibility of the cystine is unchanged when the conserved histidine is mutated to alanine. Tight binding by reduced sBsSco is observed for Cu(II) by electronic absorption, intrinsic fluorescence, and EPR spectroscopies, and isothermal titration calorimetry with an observed stoichiometry of one Cu(II) ion per sBsSco and a KD of approximately 50 nM. Tight binding of Cu(I) and Ag(I) is observed by quenching of intrinsic tryptophan fluorescence. Cobalt(II) exhibits weak binding, whereas Ni(II) and Zn(II) do not appear to bind. The high-affinity binding of metals by BsSco is triggered by its redox state, and this property could be important for its function in vivo.  相似文献   

5.
The assembly of the copper sites in cytochrome c oxidase involves a series of accessory proteins, including Cox11, Cox17, and Sco1. The two mitochondrial inner membrane proteins Cox11 and Sco1 are thought to be copper donors to the Cu(B) and Cu(A) sites of cytochrome oxidase, respectively, whereas Cox17 is believed to be the copper donor to Sco1 within the intermembrane space. In this report we show Cox17 is a specific copper donor to both Sco1 and Cox11. Using in vitro studies with purified proteins, we demonstrate direct copper transfer from CuCox17 to Sco1 or Cox11. The transfer is specific because no transfer occurs to heterologous proteins, including bovine serum albumin and carbonic anhydrase. In addition, a C57Y mutant of Cox17 fails to transfer copper to Sco1 but is competent for copper transfer to Cox11. The in vitro transfer studies were corroborated by a yeast cytoplasm expression system. Soluble domains of Sco1 and Cox11, lacking the mitochondrial targeting sequence and transmembrane domains, were expressed in the yeast cytoplasm. Metallation of these domains was strictly dependent on the co-expression of Cox17. Thus, Cox17 represents a novel copper chaperone that delivers copper to two proteins.  相似文献   

6.
The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu–ySco1) were determined to 1.8- and 2.3-Å resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu–ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.  相似文献   

7.
Cytochrome caa3 from Bacillus subtilis is a member of the heme-copper oxidase family of integral membrane enzymes that includes mitochondrial cytochrome c oxidase. Subunit II of cytochrome caa3 has an extra 100 amino acids at its C-terminus, relative to its mitochondrial counterpart, and this extension encodes a heme C binding domain. Cytochrome caa3 has many of the properties of the complex formed between mitochondrial cytochrome c and mitochondrial cytochrome c oxidase. To examine more closely the interaction between cytochrome c and the oxidase we have cloned and expressed the Cu(A)-cytochrome c portion of subunit II from the cytochrome caa3 complex of B. subtilis. We are able to express about 2000 nmol, equivalent to 65 mg, of the Cu(A)-cytochrome c protein per litre of Escherichia coli culture. About 500 nmol is correctly targeted to the periplasmic space and we purify 50% of that by a combination of affinity chromatography and ammonium sulfate fractionation. The cytochrome c containing sub-domain is well-folded with a stable environment around the heme C center, as its mid-point potential and rates of reduction are indistinguishable from values for the cytochrome c domain of the holo-enzyme. However, the Cu(A) site lacks copper leading to an inherent instability in this sub-domain. Expression of B. subtilis cytochrome c, as exemplified by the Cu(A)-cytochrome c protein, can be achieved in E. coli, and we conclude that the cytochrome c and Cu(A) sub-domains behave independently despite their close physical and functional association.  相似文献   

8.
Sco1, a protein required for the proper assembly of cytochrome c oxidase, has a soluble domain anchored to the cytoplasmic membrane through a single transmembrane segment. The solution structure of the soluble part of apoSco1 from Bacillus subtilis has been solved by NMR and the internal mobility characterized. Its fold places Sco1 in a distinct subgroup of the functionally unrelated thioredoxin proteins. In vitro Sco1 binds copper(I) through a CXXXCP motif and possibly His 135 and copper(II) in two different species, thus suggesting that copper(II) is adventitious more than physiological. The Sco1 structure represents the first structure of this class of proteins, present in a variety of eukaryotic and bacterial organisms, and elucidates a link between copper trafficking proteins and thioredoxins. The availability of the structure has allowed us to model the homologs Sco1 and Sco2 from S. cerevisiae and to discuss the physiological role of the Sco family.  相似文献   

9.
The Synthesis of Cytochrome Oxidase protein, or SCO protein, is required for the assembly of cytochrome c oxidase in many mitochondrial and bacterial respiratory chains. SCOs have been proposed to deliver copper to the CuA site of cytochrome c oxidase. We have reported that Bacillus subtilis SCO (i.e., BsSCO) binds Cu(II) with high-affinity via a two-step process mediated by three conserved residues (i.e., two cysteines and one histidine, or the CCH motif). A remarkable feature in the reaction of reduced (i.e., di-thiol) BsSCO with copper is that it does not generate any of the disulfide form of BsSCO. This molecular aversion is proposed to be a consequence of a binding mechanism in which the initial copper complex of BsSCO does not involve cysteine, but instead involves nitrogen ligands. We test this proposal here by constructing two isomers of BsSCO in which the conserved copper binding residues (i.e., the CCH-motif) are retained, but their positions are altered. In these variants the two cysteines are exchanged with histidine, and both react transiently with copper (II) with distinct kinetic profiles. The reaction generates Cu(I) and the protein is oxidized to its disulfide form. EPR analysis supports a copper binding model in which cysteine, which is at the “histidine position” in the mutant, is part of an initial encounter complex with copper. When cysteine is the initial ligating residue an oxidation reaction ensues. In contrast initial binding to native BsSCO uses nitrogen-based ligands, and thereby avoids the opportunity for thiol oxidation.  相似文献   

10.
Cox17 is a 69-residue cysteine-rich, copper-binding protein that has been implicated in the delivery of copper to the Cu(A) and Cu(B) centers of cytochrome c oxidase via the copper-binding proteins Sco1 and Cox11, respectively. According to isothermal titration calorimetry experiments, fully reduced Cox17 binds one Cu(I) ion with a K(a) of (6.15 +/- 5.83) x 10(6) M(-1). The solution structures of both apo and Cu(I)-loaded Cox17 reveal two alpha helices preceded by an extensive, unstructured N-terminal region. This region is reminiscent of intrinsically unfolded proteins. The two structures are very similar overall with residues in the copper-binding region becoming more ordered in Cu(I)-loaded Cox17. Based on the NMR data, the Cu(I) ion has been modeled as two-coordinate with ligation by conserved residues Cys(23) and Cys(26). This site is similar to those observed for the Atx1 family of copper chaperones and is consistent with reported mutagenesis studies. A number of conserved, positively charged residues may interact with complementary surfaces on Sco1 and Cox11, facilitating docking and copper transfer. Taken together, these data suggest that Cox17 is not only well suited to a copper chaperone function but is specifically designed to interact with two different target proteins.  相似文献   

11.
Cox17 is an essential protein in the assembly of cytochrome c oxidase within the mitochondrion. Cox17 is implicated in providing copper ions for formation of CuA and CuB sites in the oxidase complex. To address whether Cox17 is functional in shuttling copper ions to the mitochondrion, Cox17 was tethered to the mitochondrial inner membrane by a fusion to the transmembrane domain of the inner membrane protein, Sco2. The copper-binding domain of Sco2 that projects into the inter-mitochondrial membrane space was replaced with Cox17. The Sco2/Cox17 fusion protein containing the mitochondrial import sequence and transmembrane segment of Sco2 is exclusively localized within the mitochondrion. The Sco2/Cox17 protein restores respiratory growth and normal cytochrome oxidase activity in cox17Delta cells. These studies suggest that the function of Cox17 is confined to the mitochondrial intermembrane space. Domain mapping of yeast Cox17 reveals that the carboxyl-terminal segment of the protein has a function within the intermembrane space that is independent of copper ion binding. The essential C-terminal function of Cox17 maps to a candidate amphipathic helix that is important for mitochondrial uptake and retention of the Cox17 protein. This motif can be spatially separated from the N-terminal copper-binding functional motif. Possible roles of the C-terminal motif are discussed.  相似文献   

12.
SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the Cu(A) center contained within subunit II of the oxidase complex. The Cu(A) center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a(3) and Cu(B). Cu(A) consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of Cu(A) present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in Cu(A) assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-Cu(A) site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

13.
Bennett B  Hill BC 《FEBS letters》2011,585(6):861-864
The Bacillus subtilis version of SCO1 (BsSCO) is required for assembly of Cu(A) in cytochrome c oxidase and may function in thiol-disulfide exchange and/or copper delivery. BsSCO binds Cu(II) with ligation by two cysteines, one histidine and one water. However, copper is a catalyst of cysteine oxidation and BsSCO must avoid this reaction to remain functional. Time resolved, rapid freeze-quench (RFQ) electron paramagnetic resonance of apo-BsSCO reacting with Cu(II) reveals an initial Cu(II) species with two equatorially coordinated nitrogen atoms, but no sulfur. We propose that BsSCO evolves from this initial sulfur free coordination of Cu(II) to the final dithiolate species via a change in conformation, and that the initial binding by nitrogen is a means for BsSCO to avoid premature thiol oxidation.  相似文献   

14.
Lode A  Kuschel M  Paret C  Rödel G 《FEBS letters》2000,485(1):19-24
Yeast mitochondrial Sco1p is required for the formation of a functional cytochrome c oxidase (COX). It was suggested that Sco1p aids copper delivery to the catalytic center of COX. Here we show by affinity chromatography and coimmunoprecipitation that Sco1p interacts with subunit Cox2p. In addition we provide evidence that Sco1p can form homomeric complexes. Both homomer formation and binding of Cox2p are neither dependent on the presence of copper nor affected by mutations of His-239, Cys-148 or Cys-152. These amino acids, which are conserved among the members of the Sco1p family, have been suggested to act in the reduction of the cysteines in the copper binding center of Cox2p and are discussed as ligands for copper.  相似文献   

15.
Cytochrome c oxidase assembly process involves many accessory proteins including Cox11, which is a copper-binding protein required for Cu incorporation into the Cu(B) site of cytochrome c oxidase. In a genome wide search, a number of Cox11 homologs are found in all of the eukaryotes with complete genomes and in several Gram-negative bacteria. All of them possess a highly homologous soluble domain and contain an N-terminal fragment that anchors the protein to the membrane. An anchor-free construct of 164 amino acids was obtained from Sinorhizobium meliloti, and the first structure of this class of proteins is reported here. The apoform has an immunoglobulin-like fold with a novel type of beta-strand organization. The copper binding motif composed of two highly conserved cysteines is located on one side of the beta-barrel structure. The apoprotein is monomeric in the presence of dithiothreitol, whereas it dimerizes in the absence of the reductant. When copper(I) binds, NMR and extended x-ray absorption fine structure (EXAFS) data indicate a dimeric protein state with two thiolates bridging two copper(I) ions. The present results advance the knowledge on the poorly understood molecular aspects of cytochrome c oxidase assembly.  相似文献   

16.
Horn D  Barrientos A 《IUBMB life》2008,60(7):421-429
Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the Cu(A) site, the primary acceptor of electrons from ferrocytochrome c. The third copper, Cu(B), is associated with the high-spin heme a(3) group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1) the source of the copper used for COX metallation; 2) the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the Cu(A) and Cu(B) sites, respectively; 3) the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4) the existence of at least four Cox17p homologues carrying a similar twin CX(9)C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5) the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX(9)C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis.  相似文献   

17.
Sco proteins are present in all types of organisms, including the vast majority of eukaryotes and many prokaryotes. It is well established that Sco proteins in eukaryotes are involved in the assembly of the Cu(A) cofactor of mitochondrial cytochrome c oxidase; however their precise role in this process has not yet been elucidated at the molecular level. In particular, some but not all eukaryotes including humans possess two Sco proteins whose individual functions remain unclear. There is evidence that eukaryotic Sco proteins are also implicated in other cellular processes such as redox signalling and regulation of copper homeostasis. The range of physiological functions of Sco proteins appears to be even wider in prokaryotes, where Sco-encoding genes have been duplicated many times during evolution. While some prokaryotic Sco proteins are required for the biosynthesis of cytochrome c oxidase, others are most likely to take part in different processes such as copper delivery to other enzymes and protection against oxidative stress. The detailed understanding of the multiplicity of roles ascribed to Sco proteins requires the identification of the subtle determinants that modulate the two properties central to their known and potential functions, i.e. copper binding and redox properties. In this review, we provide a comprehensive summary of the current knowledge on Sco proteins gained by genetic, structural and functional studies on both eukaryotic and prokaryotic homologues, and propose some hints to unveil the elusive molecular mechanisms underlying their functions.  相似文献   

18.
Human Sco2 is a mitochondrial membrane-bound protein involved in copper supply for the assembly of cytochrome c oxidase in eukaryotes. Its precise action is not yet understood. We report here a structural and dynamic characterization by NMR of the apo and copper(I) forms of the soluble fragment. The structural and metal binding features of human Cu(I)Sco2 are similar to the more often studied Sco1 homolog, although the dynamic properties and the conformational disorder are quite different when the apo forms and the copper(I)-loaded forms of the two proteins are compared separately. Such differences are accounted for in terms of the different physicochemical properties in strategic protein locations. The misfunction of the known pathogenic mutations is discussed on the basis of the obtained structure.  相似文献   

19.
The structure of the CuA-containing, extracellular domain of Thermus thermophilus ba3-type cytochrome c oxidase has been determined to 1.6 A resolution using multiple X-ray wavelength anomalous dispersion (MAD). The Cu2S2 cluster forms a planar rhombus with a copper-copper distance of 2.51 +/- 0.03 A. X-ray absorption fine-structure (EXAFS) studies show that this distance is unchanged by crystallization. The CuA center is asymmetrical; one copper is tetrahedrally coordinated to two bridging cysteine thiolates, one histidine nitrogen and one methionine sulfur, while the other is trigonally coordinated by the two cysteine thiolates and a histidine nitrogen. Combined sequence-structure alignment of amino acid sequences reveals conserved interactions between cytochrome c oxidase subunits I and II.  相似文献   

20.
Ye Q  Imriskova-Sosova I  Hill BC  Jia Z 《Biochemistry》2005,44(8):2934-2942
BsSco is a membrane-associated protein from Bacillus subtilis characterized by the sequence CXXXCP, which is conserved in yeast and human mitochondrial Sco proteins, and their bacterial homologues. BsSco is involved in the assembly of the Cu(A) center in cytochrome c oxidase and may play a role in the transfer of copper to this site. We have characterized the soluble domain of BsSco by biochemical, spectroscopic, and structural approaches. Soluble BsSco is monomeric in solution, and the two conserved cysteines are involved in an intramolecular cystine bridge. The cystine bridge is easily reduced, and circular dichroism spectroscopy shows no large-scale changes in BsSco's secondary structure upon reduction. The crystal structure of soluble BsSco, determined at 1.7 A resolution, reveals typical elements of a thioredoxin fold. The CXXXCP motif, in which Cys45 and Cys49 are conserved, is located in a turn structure on the surface of the protein. In various native and His135Ala mutant structures, both disulfide-bonded and non-disulfide-bonded forms of CXXXCP are observed. However, despite extensive attempts, copper has not been found near or beyond the CXXXCP motif, a presumptive copper-binding site. Another potential copper binding residue, His135, is located in a highly flexible loop parallel to the CXXXCP loop but is more than 10 A from Cys45 and Cys49. If these three residues are to coordinate copper, a conformational change is necessary. The structural identification of a disulfide switch demonstrates that BsSco has the capability to fill a redox role in Cu(A) assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号