首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
During vertebrate embryonic development, cardiac and skeletal muscle originates from distinct precursor populations. Despite the profound structural and functional differences in the striated muscle tissue they eventually form, such progenitors share many features such as components of contractile apparatus. In vertebrate embryos, the alpha-cardiac actin gene encodes a major component of the myofibril in both skeletal and cardiac muscle. Here, we show that expression of Xenopus cardiac alpha-actin in the myotomes and developing heart tube of the tadpole requires distinct enhancers within its proximal promoter. Using transgenic embryos, we find that mutations in the promoter-proximal CArG box and 5 bp downstream of it specifically eliminate expression of a GFP transgene within the developing heart, while high levels of expression in somitic muscle are maintained. This sequence is insufficient on its own to limit expression solely to the myocardium, such restriction requiring multiple elements within the proximal promoter. Two additional enhancers are active in skeletal muscle of the embryo, either one of which has to interact with the proximal CArG box for correct expression to be established. Transgenic reporters containing multimerised copies of CArG box 1 faithfully detect most sites of SRF expression in the developing embryo as do equivalent reporters containing the SRF binding site from the c-fos promoter. Significantly, while these motifs possess a different A/T core within the CC(A/T)(6)GG consensus and show no similarity in flanking sequence, each can interact with a myotome-specific distal enhancer of cardiac alpha-actin promoter, to confer appropriate cardiac alpha-actin-specific regulation of transgene expression. Together, these results suggest that the role of CArG box 1 in the cardiac alpha-actin gene promoter is to act solely as a high-affinity SRF binding site.  相似文献   

9.
10.
Determinants of inducible brain natriuretic peptide promoter activity   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
The recently described NK2 family of homeodomain proteins are key developmental regulators. In Drosophila melanogaster, two members of this family, bagpipe and tinman, are required for visceral and cardiac mesoderm formation, respectively. In vertebrates, tinman appears to represent a family of closely related NK2 genes, including Nkx-2.5, that are expressed at an early stage in precardiac cells. Consistent with a role for Nkx-2.5 in heart development, inactivation of the Nkx-2.5 gene in mice causes severe cardiac malformations and embryonic lethality. However, little is known about the molecular action of Nkx-2.5 and its targets in cardiac muscle. In this paper, we report the identification and characterization of a functional and highly conserved Nkx-2.5 response element, termed the NKE, in the proximal region of the cardiac atrial natriuretic factor (ANF) promoter. The NKE is composed of two near-consensus NK2 binding sites that are each able to bind purified Nkx-2.5. The NKE is sufficient to confer cardiac cell-specific activity to a minimal TATA-containing promoter and is required for Nkx-2.5 activation of the ANF promoter in heterologous cells. Interestingly, in primary cardiocyte cultures, the NKE contributes to ANF promoter activity in a chamber- and developmental stage-specific manner, suggesting that Nkx-2.5 and/or other related cardiac proteins may play a role in chamber specification. This work provides the identification of a direct target for NK2 homeoproteins in the heart and lays the foundation for further molecular analyses of the role of Nkx-2.5 and other NK2 proteins in cardiac development.  相似文献   

13.
14.
15.
16.
The human β-like globin genes are arranged as a clusterof five genes (ε, Gγ, Aγ, δ and β) in the order of theirtemporal expression. The human embryonic ε-globin geneis expressed in the blood island of the embryonic yolk sacand is silenced completel  相似文献   

17.
18.
19.
Serum response factor (SRF) is a key regulator of a number of extracellular signal-regulated genes important for cell growth and differentiation. A form of the SRF gene with a double mutation (dmSRF) was generated. This mutation reduced the binding activity of SRF protein to the serum response element and reduced the capability of SRF to activate the atrial natriuretic factor promoter that contains the serum response element. Cardiac-specific overexpression of dmSRF attenuated the total SRF binding activity and resulted in remarkable morphologic changes in the heart of the transgenic mice. These mice had dilated atrial and ventricular chambers, and their ventricular wall thicknesses were only 1/2 to 1/3 the thickness of that of nontransgenic mice. Also these mice had smaller cardiac myocytes and had less myofibrils in their myocytes relative to nontransgenic mice. Altered gene expression and slight interstitial fibrosis were observed in the myocardium of the transgenic mice. All the transgenic mice died within the first 12 days after birth, because of the early onset of severe, dilated cardiomyopathy. These results indicate that dmSRF overexpression in the heart apparently alters cardiac gene expression and blocks normal postnatal cardiac growth and development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号