首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by secondary mutations. Fusidic acid (FA), an antibiotic used against pathogenic bacteria Staphylococcus aureus, locks elongation factor-G (EF-G) to the ribosome after GTP hydrolysis. To clarify the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that a significantly slower tRNA translocation and ribosome recycling, plus increased peptidyl-tRNA drop-off, are the causes for fitness defects of the primary FA-resistant mutant F88L. The double mutant F88L/M16I is three to four times faster than F88L in both reactions and showed no tRNA drop-off, explaining its fitness compensatory phenotype. The M16I mutation alone showed hypersensitivity to FA, higher activity, and somewhat increased affinity to GTP. The crystal structures demonstrate that Phe-88 in switch II is a key residue for FA locking and also for triggering interdomain movements in EF-G essential for its function, explaining functional deficiencies in F88L. The mutation M16I loosens the hydrophobic core in the G domain and affects domain I to domain II contact, resulting in improved activity both in the wild-type and F88L background. Thus, FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome.  相似文献   

2.
Fusidic acid is a potent antibiotic against severe Gram-positive infections that interferes with the function of elongation factor G (EF-G), thereby leading to the inhibition of bacterial protein synthesis. In this study, we demonstrate that fusidic acid resistance in Staphylococcus aureus results from point mutations within the chromosomal fusA gene encoding EF-G. Sequence analysis of fusA revealed mutational changes that cause amino acid substitutions in 10 fusidic acid-resistant clinical S. aureus strains as well as in 10 fusidic acid-resistant S. aureus mutants isolated under fusidic acid selective pressure in vitro. Fourteen different amino acid exchanges were identified that were restricted to 13 amino acid residues within EF-G. To confirm the importance of observed amino acid exchanges in EF-G for the generation of fusidic acid resistance in S. aureus, three mutant fusA alleles encoding EF-G derivatives with the exchanges P406L, H457Y and L461K were constructed by site-directed mutagenesis. In each case, introduction of the mutant fusA alleles on plasmids into the fusidic acid-susceptible S. aureus strain RN4220 caused a fusidic acid-resistant phenotype. The elevated minimal inhibitory concentrations of fusidic acid determined for the recombinant bacteria were analogous to those observed for the fusidic acid-resistant clinical S. aureus isolates and the in vitro mutants containing the same chromosomal mutations. Thus, the data presented provide evidence for the crucial importance of individual amino acid exchanges within EF-G for the generation of fusidic acid resistance in S. aureus.  相似文献   

3.
We examined how the fitness costs of mupirocin resistance caused by mutations in the chromosomal isoleucyl-tRNA synthetase gene (ileS) can be ameliorated. Mupirocin-resistant mutants were isolated and four different, resistance-conferring point mutations in the chromosomal ileS gene were identified. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged to evolve compensated mutants with increased fitness. In 34/50 of the evolved lineages, the increase in fitness resulted from additional point mutations in isoleucine tRNA synthetase (IleRS). Measurements in vitro of the kinetics of aminoacylation of wild-type and mutant enzymes showed that resistant IleRS had a reduced rate of aminoacylation due to altered interactions with both tRNAIle and ATP. The intragenic compensatory mutations improved IleRS kinetics towards the wild-type enzyme, thereby restoring bacterial fitness. Seven of the 16 lineages that lacked second-site compensatory mutations in ileS, showed an increase in ileS gene dosage, suggesting that an increased level of defective IleRS compensate for the decrease in aminoacylation activity. Our findings show that the fitness costs of ileS mutations conferring mupirocin resistance can be reduced by several types of mechanisms that may contribute to the stability of mupirocin resistance in clinical settings.  相似文献   

4.
Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin‐based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug‐resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance‐mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance‐mediating polymorphisms lead to malaria parasites that, compared with wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness‐mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria.  相似文献   

5.
Understanding the conditions that favour the evolution and maintenance of antibiotic resistance is the central goal of epidemiology. A crucial feature explaining the adaptation to harsh, or 'sink', environments is the supply of beneficial mutations via migration from a 'source' population. Given that antibiotic resistance is frequently associated with antagonistic pleiotropic fitness costs, increased migration rate is predicted not only to increase the rate of resistance evolution but also to increase the probability of fixation of resistance mutations with minimal fitness costs. Here we report in vitro experiments using the nosocomial pathogenic bacterium Pseudomonas aeruginosa that support these predictions: increasing rate of migration into environments containing antibiotics increased the rate of resistance evolution and decreased the associated costs of resistance. Consistent with previous theoretical work, we found that resistance evolution arose more rapidly in the presence of a single antibiotic than two. Evolution of resistance was also more rapid when bacteria were subjected to sequential exposure with two antibiotics (cycling therapy) compared with simultaneous exposure (bi-therapy). Furthermore, pleiotropic fitness costs of resistance to two antibiotics were higher than for one antibiotic, and were also higher under bi-therapy than cycling therapy, although the cost of resistance depended on the order of the antibiotics through time. These results may be relevant to the clinical setting where immigration is known to be important between chemotherapeutically treated patients, and demonstrate the importance of ecological and evolutionary dynamics in the control of antibiotic resistance.  相似文献   

6.
Adaptive evolution often involves beneficial mutations at more than one locus. In this case, the trajectory and rate of adaptation is determined by the underlying fitness landscape, that is, the fitness values and mutational connectivity of all genotypes under consideration. Drug resistance, especially resistance to multiple drugs simultaneously, is also often conferred by mutations at several loci so that the concept of fitness landscapes becomes important. However, fitness landscapes underlying drug resistance are not static but dependent on drug concentrations, which means they are influenced by the pharmacodynamics of the drugs administered. Here, I present a mathematical framework for fitness landscapes of multidrug resistance based on Hill functions describing how drug concentrations affect fitness. I demonstrate that these ‘pharmacodynamic fitness landscapes’ are characterized by pervasive epistasis that arises through (i) fitness costs of resistance (even when these costs are additive), (ii) nonspecificity of resistance mutations to drugs, in particular cross‐resistance, and (iii) drug interactions (both synergistic and antagonistic). In the latter case, reciprocal drug suppression may even lead to reciprocal sign epistasis, so that the doubly resistant genotype occupies a local fitness peak that may be difficult to access by evolution. Simulations exploring the evolutionary dynamics on some pharmacodynamic fitness landscapes with both constant and changing drug concentrations confirm the crucial role of epistasis in determining the rate of multidrug resistance evolution.  相似文献   

7.
The spread of bacterial antibiotic resistance mutations is thought to be constrained by their pleiotropic fitness costs. Here we investigate the fitness costs of resistance in the context of the evolution of multiple drug resistance (MDR), by measuring the cost of acquiring streptomycin resistance mutations (StrepR) in independent strains of the bacterium Pseudomonas aeruginosa carrying different rifampicin resistance (RifR) mutations. In the absence of antibiotics, StrepR mutations are associated with similar fitness costs in different RifR genetic backgrounds. The cost of StrepR mutations is greater in a rifampicin‐sensitive (RifS) background, directly demonstrating antagonistic epistasis between resistance mutations. In the presence of rifampicin, StrepR mutations have contrasting effects in different RifR backgrounds: StrepR mutations have no detectable costs in some RifR backgrounds and massive fitness costs in others. Our results clearly demonstrate the importance of epistasis and genotype‐by‐environment interactions for the evolution of MDR.  相似文献   

8.
Epistatic interactions between resistance mutations in antibiotic-free environments potentially play a crucial role in the spread of resistance in pathogen populations by determining the fitness cost associated with resistance. We used an experimental evolution approach to test for epistatic interactions between 14 different pairs of rifampicin mutations in the pathogenic bacterium Pseudomonas aeruginosa in 42 different rifampicin-free environments. First, we show that epistasis between rifampicin-resistance mutations tends to be antagonistic: the fitness effect of having two mutations is generally smaller than that predicted from the effects of individual mutations on the wild-type. Second, we show that sign epistasis between resistance mutations is both common and strong; most notably, pairs of deleterious resistance mutations often partially or completely compensate for each others' costs, revealing a novel mechanism for compensatory adaptation. These results suggest that antagonistic epistasis between intragenic resistance mutations may be a key determinant of the cost of antibiotic resistance and compensatory adaptation in pathogen populations.  相似文献   

9.
Fusidic acid (FA) is a steroid antibiotic commonly used against Gram positive bacterial infections. It inhibits protein synthesis by stalling elongation factor G (EF-G) on the ribosome after translocation. A significant number of the mutations conferring strong FA resistance have been mapped at the interfaces between domains G, III and V of EF-G. However, direct information on how such mutations affect the structure has hitherto not been available. Here we present the crystal structures of two mutants of Thermus thermophilus EF-G, G16V and T84A, which exhibit FA hypersensitivity and resistance in vitro, respectively. These mutants also have higher and lower affinity for GTP respectively than wild-type EF-G. The mutations cause significant conformational changes in the switch II loop that have opposite effects on the position of a key residue, Phe90, which undergoes large conformational changes. This correlates with the importance of Phe90 in FA sensitivity reported in previous studies. These structures substantiate the importance of the domain G/domain III/domain V interfaces as a key component of the FA binding site. The mutations also cause subtle changes in the environment of the "P-loop lysine", Lys25. This led us to examine the conformation of the equivalent residue in all structures of translational GTPases, which revealed that EF-G and eEF2 form a group separate from the others and suggested that the role of Lys25 may be different in the two groups.  相似文献   

10.
Bacterial antibiotic resistance is often associated with a fitness cost in the absence of the antibiotic [1,2]. We have examined a resistance mechanism in Staphylococcus aureus that negates these costs. Exposure to gentamicin both in vitro and in vivo has been reported to result in the emergence of a gentamicin-resistant small colony variant (SCV)[3-8]. We show that the emergence of SCVs following exposure to gentamicin results from a rapid switch and that bacteria exposed to cycles of gentamicin followed by antibiotic-free medium repeatedly switched between a resistant SCV and a sensitive parental phenotype (revertants). The fitness of revertants relative to S. aureus with stable gentamicin resistance was greater in drug-free media, which suggests that S. aureus has evolved an inducible and reversible resistance mechanism that circumvents a permanent cost to fitness.  相似文献   

11.
The fitness effects of antibiotic resistance mutations in antibiotic‐free conditions play a key role in determining the long‐term maintenance of resistance. Although resistance is usually associated with a cost, the impact of environmental variation on the cost of resistance is poorly understood. Here, we test the impact of heterogeneity in temperature and resource availability on the fitness effects of antibiotic resistance using strains of the pathogenic bacterium Pseudomonas aeruginosa carrying clinically important rifampicin resistance mutations. Although the rank order of fitness was generally maintained across environments, fitness effects relative to the wild type differed significantly. Changes in temperature had a profound impact on the fitness effects of resistance, whereas changes in carbon substrate had only a weak impact. This suggests that environmental heterogeneity may influence whether the costs of resistance are likely to be ameliorated by second‐site compensatory mutations or by reversion to wild‐type rpoB. Our results highlight the need to consider environmental heterogeneity and genotype‐by‐environment interactions for fitness in models of resistance evolution.  相似文献   

12.
In rapidly changing environments, selection history may impact the dynamics of adaptation. Mutations selected in one environment may result in pleiotropic fitness trade-offs in subsequent novel environments, slowing the rates of adaptation. Epistatic interactions between mutations selected in sequential stressful environments may slow or accelerate subsequent rates of adaptation, depending on the nature of that interaction. We explored the dynamics of adaptation during sequential exposure to herbicides with different modes of action in Chlamydomonas reinhardtii. Evolution of resistance to two of the herbicides was largely independent of selection history. For carbetamide, previous adaptation to other herbicide modes of action positively impacted the likelihood of adaptation to this herbicide. Furthermore, while adaptation to all individual herbicides was associated with pleiotropic fitness costs in stress-free environments, we observed that accumulation of resistance mechanisms was accompanied by a reduction in overall fitness costs. We suggest that antagonistic epistasis may be a driving mechanism that enables populations to more readily adapt in novel environments. These findings highlight the potential for sequences of xenobiotics to facilitate the rapid evolution of multiple-drug and -pesticide resistance, as well as the potential for epistatic interactions between adaptive mutations to facilitate evolutionary rescue in rapidly changing environments.  相似文献   

13.
Resistance to antifolates in Plasmodium falciparum is well described and has been observed in clinical settings for decades. At the molecular level, point mutations in the dhfr gene that lead to resistance have been identified, and the crystal structure of the wildtype and mutant dihydrofolate reductase enzymes have been solved in complex with native substrate and drugs. However, we are only beginning to understand the complexities of the evolutionary pressures that lead to the evolution of drug resistance in this system. Microbial systems that allow heterologous expression of malarial proteins provide a tractable way to investigate patterns of evolution that can inform our eventual understanding of the more complex factors that influence the evolution of drug resistance in clinical settings. In this paper we will review work in Escherichia coli and Saccharomyces cerevisiae expression systems that explore the fitness landscape of mutations implicated in drug resistance and show that (i) a limited number of evolutionary pathways to resistance are followed with high probability; (ii) fitness costs associated with the maintenance of high levels of resistance are modest; and (iii) different antifolates may exert opposing selective forces.  相似文献   

14.
Two hypersensitive and two resistant variants of elongation factor-G (EF-G) toward fusidic acid are studied in comparison with the wild type factor. All mutated proteins are active in a cell-free translation system and ribosome-dependent GTP hydrolysis. The EF-G variants with the Thr-84-->Ala or Asp-109-->Lys mutations bring about a strong resistance of EF-G to the antibiotic, whereas the EF-Gs with substitutions Gly-16-->Val or Glu-119-->Lys are the first examples of fusidic acid-hypersensitive factors. A correlation between fusidic acid resistance of EF-G mutants and their affinity to GTP are revealed in this study, although their interactions with GDP are not changed. Thus, fusidic acid-hypersensitive mutants have the high affinity to an uncleavable GTP analog, but the association of resistant mutants with GTP is decreased. The effects of either fusidic acid-sensitive or resistant mutations can be explained by the conformational changes in the EF-G molecule, which influence its GTP-binding center. The results presented in this paper indicate that fusidic acid-sensitive mutant factors have a conformation favorable for GTP binding and subsequent interaction with the ribosomes.  相似文献   

15.
Adaptations conferring resistance to xenobiotics (antibiotics, insecticides, herbicides, etc.) are often costly to the organism's fitness in the absence of the selecting agent. In such conditions, and unless other mutations compensate for the costs of resistance, sensitive individuals are expected to out-reproduce resistant individuals and drive resistance alleles to a low frequency, with the rate and magnitude of this decline being proportional to the costs of resistance. However, this evolutionary dynamic is open to modification by other sources of selection acting on the relative fitness of susceptible and resistant individuals. Here we show parasitism not only as a source of selection capable of modifying the costs of organophosphate insecticide resistance in mosquitoes, but also that qualitatively different interactions (increasing or decreasing the relative fitness of resistant individuals) occurred depending on the particular form of resistance involved. As estimates of the parasite's fitness also varied according to its host's form of resistance, our data illustrate the potential for epidemiological feedbacks to influence the strength and direction of selection acting on resistance mutations in untreated environments.  相似文献   

16.
Fitness costs of resistance to Bacillus thuringiensis (Bt) crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella), resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.  相似文献   

17.
Most chromosomal mutations that cause antibiotic resistance impose fitness costs on the bacteria. This biological cost can often be reduced by compensatory mutations. In Salmonella typhimurium, the nucleotide substitution AAA42 --> AAC in the rpsL gene confers resistance to streptomycin. The resulting amino acid substitution (K42N) in ribosomal protein S12 causes an increased rate of ribosomal proofreading and, as a result, the rate of protein synthesis, bacterial growth and virulence are decreased. Eighty-one independent lineages of the low-fitness, K42N mutant were evolved in the absence of antibiotic to ameliorate the costs. From the rate of fixation of compensated mutants and their fitness, the rate of compensatory mutations was estimated to be > or = 10-7 per cell per generation. The size of the population bottleneck during evolution affected fitness of the adapted mutants: a larger bottleneck resulted in higher average fitness. Only four of the evolved lineages contained streptomycin-sensitive revertants. The remaining 77 lineages contained mutants that were still fully streptomycin resistant, had retained the original resistance mutation and also acquired compensatory mutations. Most of the compensatory mutations, resulting in at least 35 different amino acid substitutions, were novel single-nucleotide substitutions in the rpsD, rpsE, rpsL or rplS genes encoding the ribosomal proteins S4, S5, S12 and L19 respectively. Our results show that the deleterious effects of a resistance mutation can be compensated by an unexpected variety of mutations.  相似文献   

18.
19.
Pleiotropic fitness trade-offs will be key determinants of the evolutionary dynamics of selection for pesticide resistance. However, for herbicide resistance, empirical support for a fitness cost of resistance is mixed, and it is therefore also questionable what further ecological trade-offs can be assumed to apply to herbicide resistance. Here, we test the existence of trade-offs by experimentally evolving herbicide resistance in Chlamydomonas reinhardtii. Although fitness costs are detected for all herbicides, we find that, counterintuitively, the most resistant populations also have the lowest fitness costs as measured by growth rate in the ancestral environment. Furthermore, after controlling for differences in the evolutionary dynamics of resistance to different herbicides, we also detect significant positive correlations between resistance, fitness in the ancestral environment and cross-resistance to other herbicides. We attribute this to the highest levels of nontarget-site resistance being achieved by fixing mutations that more broadly affect cellular physiology, which results in both more cross-resistance and less overall antagonistic pleiotropy on maximum growth rate. Consequently, the lack of classical ecological trade-offs could present a major challenge for herbicide resistance management.  相似文献   

20.
The primary mechanism of fusidic acid resistance in clinical strains of Staphylococcus aureus involves acquisition of the fusB determinant. The genetic elements(s) responsible are incompletely defined, and the mechanism of resistance is unknown. Here we report the cloning, sequencing and overexpression of a single gene (fusB) from plasmid pUB101 capable of conferring resistance to fusidic acid in S. aureus. The fusB gene is located on a transposon-like element and encodes a small (25 kDa), cytoplasmic protein for which homologues exist in a number of clinically important and environmental Gram-positive bacterial species. Bioinformatic analysis of regions immediately upstream of fusB suggested that expression of resistance is regulated by translational attenuation, which was confirmed through use of reporter fusions. FusB was overexpressed in Escherichia coli as a polyhistidine-tagged fusion product, and the purified protein shown to protect an in vitro staphylococcal translation system from inhibition by fusidic acid in a specific and dose-dependent fashion. Purified FusB bound staphylococcal EF-G, the target of fusidic acid. The protein provided no protection from inhibition by fusidic acid when added to an in vitro E. coli translation system, consistent both with the observed failure of FusB to bind E. coli EF-G, and its inability to confer resistance in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号