首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shared features between plant and animal programmed cell death are becoming increasingly apparent. In this study, human Bcl-2, an anti-apoptotic member of the Bcl-2 family of cell death regulators, was stably expressed in tobacco. Previously, we have shown that such plants were resistant/tolerant to several necrotrophic fungal pathogens. In this study, we show that transgenic plants are protected by several lethal abiotic stresses including heat, cold, menadione and hydrogen peroxide. Importantly, wild type tobacco, exposed to these treatments, not only died but during the death process exhibited features associated with mammalian apoptosis including DNA laddering, fragmentation, and the development of apoptotic bodies. These features were not observed in viable transgenic tobacco. Thus, abiotic stress induced cell death in plants can be accompanied by apoptotic-like features that are inhibited by expression of Bcl-2. These observations add to the growing body of evidence indicating trans-kingdom conservation of programmed cell death mechanisms.  相似文献   

2.
A novel Arabidopsis thaliana inhibitor of apoptosis was identified by sequence homology to other known inhibitor of apoptosis (IAP) proteins. Arabidopsis IAP-like protein (AtILP) contained a C-terminal RING finger domain but lacked a baculovirus IAP repeat (BIR) domain, which is essential for anti-apoptotic activity in other IAP family members. The expression of AtILP in HeLa cells conferred resistance against tumor necrosis factor (TNF)-α/ActD-induced apoptosis through the inactivation of caspase activity. In contrast to the C-terminal RING domain of AtILP, which did not inhibit the activity of caspase-3, the N-terminal region, despite displaying no homology to known BIR domains, potently inhibited the activity of caspase-3 in vitro and blocked TNF-α/ActD-induced apoptosis. The anti-apoptotic activity of the AtILP N-terminal domain observed in plants was reproduced in an animal system. Transgenic Arabidopsis lines overexpressing AtILP exhibited anti-apoptotic activity when challenged with the fungal toxin fumonisin B1, an agent that induces apoptosis-like cell death in plants. In AtIPL transgenic plants, suppression of cell death was accompanied by inhibition of caspase activation and DNA fragmentation. Overexpression of AtILP also attenuated effector protein-induced cell death and increased the growth of an avirulent bacterial pathogen. The current results demonstrated the existence of a novel plant IAP-like protein that prevents caspase activation in Arabidopsis and showed that a plant anti-apoptosis gene functions similarly in plant and animal systems.  相似文献   

3.
In plants, apoptotic-like programmed cell death (PCD) can be distinguished from other forms of plant cell death by protoplast condensation that results in a morphologically distinct cell corpse. In addition, there is a central regulatory role for the mitochondria and the degradation of the cell and its contents by PCD associated proteases. These distinguishing features are shared with animal apoptosis as it is probable that plant and animal cell death programmes arose in a shared unicellular ancestor. However, animal and plant cell death pathways are not completely conserved. The cell death programmes may have been further modified after the divergence of plant and animal lineages leading to converged, or indeed unique, features of their respective cell death programmes. In this review we will examine the features of apoptotic-like PCD in plants and examine the probable conserved components such as mitochondrial regulation through the release of apoptogenic proteins from the mitochondrial intermembrane space, the possible conserved or converged features such as “caspase-like” molecules which drive cellular destruction and the emerging unique features of plant PCD such as chloroplast involvement in cell death regulation.  相似文献   

4.
Plants undergo programmed cell death during development and disease in contexts that are functionally analogous to apoptosis in animals. Recent studies involving plant cell death induced by mycotoxins, pathogens and lethal mutations along with the cell-autonomous death during development now point to several conserved connections to apoptosis in animals. Morphological markers indicative of apoptosis recently reported in plants include TUNEL positive cells, DNA ladders, Ca2+-activated nucleosomal DNA cleavage, and formation of apoptotic-like bodies that occur in some but not all situations involving ordered cell death. In parallel studies with animal and plant cells treated with sphinganine analog mycotoxins our results indicate that the induction and inhibition of death may be mediated by ceramide-linked signaling systems. The presence and significance of ceramide-linked second messenger systems is well documented in animals but is virtually unknown in plants. Further research will discern the manner in which the important function of programmed cell death is conserved as well as diverged between the two kingdoms.  相似文献   

5.
Homoglutathione (hGSH), which is present in some leguminous plants, is preferred over GSH in in vitro conjugation of acifluorfen and fomesafen by glutathione S-transferase. To investigate the function of hGSH in in vivo detoxification of xenobiotics, we evaluated herbicide tolerance of transgenic tobacco plants expressing soybean homoglutathione synthetase in the cytosol or chloroplasts. Transgenic plants synthesizing hGSH in the cytosol were more tolerant to acifluorfen than wild-type plants, whereas enhanced tolerance to fomesafen was not observed. Transgenic plants synthesizing hGSH in the chloroplasts showed no enhanced tolerance to acifluorfen or fomesafen.  相似文献   

6.
7.
细胞色素c能诱导植物细胞编程性死亡   总被引:24,自引:1,他引:23  
以悬浮培养的胡萝卜(DaucuscarotaL.)与烟草(NicotianatabacumL.cv.BY2)细胞原生质体为材料,加入一定浓度的细胞色素c和dATP。不同取样时间的DAPI荧光染色与电镜超薄切片观察的结果显示染色质发生凝集、趋边化,最终形成凋亡小体。核酸电泳显示DNA发生特异降解并形成电泳“阶梯”(DNAladder)。用末端脱氧核糖核酸转移酶介导的dUTP切口末端标记方法(TUNEL)检测发现DNA的3'OH断端被原位特异标记。以上结果说明:细胞色素c能诱导植物细胞发生典型的凋亡。  相似文献   

8.
The Arabidopsis thaliana (L.) Heynh. minD gene (AtMinD1) was isolated and constitutively expressed in tobacco (Nicotiana tabacum L.) plants using the CaMV 35S promoter. Confocal and electron-microscopic analysis of the AtMinD1 transgenic tobacco lines revealed that the chloroplasts were abnormally large and fewer in number compared with wild-type tobacco plants. The abnormal chloroplasts were less prevalent in guard cells than in mesophyll cells. Chloroplast and nuclear gene expression was not significantly different in AtMinD1-overexpressing plants relative to wild-type tobacco plants. Chloroplast DNA copy number was not affected, based on the relative level of the rbcL gene in transgenic plants. Transgenic tobacco plants constitutively overexpressing AtMinD1 were completely normal phenotypically with respect to growth and development, and also displayed normal photosynthetic electron transport rates. These results show that the Arabidopsis MinD1 gene also functions in a heterologous system and confirm the role of the MinD protein in regulation of chloroplast division.  相似文献   

9.
Plant defense against pathogens often includes rapid programmed cell death known as the hypersensitive response (HR). Recent genetic studies have demonstrated the involvement of a specific mitogen-activated protein kinase (MAPK) cascade consisting of three tobacco MAPKs, SIPK, Ntf4 and WIPK, and their common upstream MAPK kinase (MAPKK or MEK), NtMEK2. Potential upstream MAPKK kinases (MAPKKKs or MEKKs) in this cascade include the orthologs of Arabidopsis MEKK1 and tomato MAPKKKalpha. Activation of the SIPK/Ntf4/WIPK pathway induces cell death with phenotypes identical to pathogen-induced HR at macroscopic, microscopic and physiological levels, including loss of membrane potential, electrolyte leakage and rapid dehydration. Loss of membrane potential in NtMEK2(DD) plants is associated with the generation of reactive oxygen species (ROS), which is preceded by disruption of metabolic activities in chloroplasts and mitochondria. We observed rapid shutdown of carbon fixation in chloroplasts after SIPK/Ntf4/WIPK activation, which can lead to the generation of ROS in chloroplasts under illumination. Consistent with a role of chloroplast-generated ROS in MAPK-mediated cell death, plants kept in the dark do not accumulate H(2)O(2) in chloroplasts after MAPK activation, and cell death is significantly delayed. Similar light dependency was observed in HR cell death induced by tobacco mosaic virus, which is known to activate the same MAPK pathway in an N-gene-dependent manner. These results suggest that activation of the SIPK/Ntf4/WIPK cascade by pathogens actively promotes the generation of ROS in chloroplasts, which plays an important role in the signaling for and/or execution of HR cell death in plants.  相似文献   

10.
11.
The death of plant cells in culture following exposure to Agrobacterium tumefaciens remains a major obstacle in developing Agrobacterium-mediated transformation into a highly efficient genotype-independent technology. Here, we present evidence that A. tumefaciens exposure induces cell death in banana cell suspensions. More than 90% of embryogenic banana cells died after exposure to A. tumefaciens and cell death was accompanied by a subset of features associated with apoptosis in mammalian cells, including DNA laddering, fragmentation, and formation of apoptotic-like bodies. Importantly, these cellular responses were inhibited in cells expressing the animal antiapoptosis genes Bcl-xL, Bcl-2 3' untranslated region, and CED-9. Inhibition of cell death resulted in up to 90% of cell clumps transformed with Bcl-xL, a 100-fold enhancement over vector controls, approaching the transformation and regeneration of every "transformable" cell. Similar results using sugarcane, a crop plant known for recalcitrance to Agrobacterium transformation, suggest that antiapoptosis genes may inhibit these phenomena and increase the transformation frequency of many recalcitrant plant species, including the major monocot cereal crop plants. Evidence of inhibition of plant cell death by cross-kingdom antiapoptotic genes also contributes to the growing evidence that genes for control of programmed cell death are conserved across wide evolutionary distances, even though these mechanisms are not well understood in plants.  相似文献   

12.
An increasing number of reports indicate that single-celled organisms are able to die following what seems to be an ordered program of cell death with strong similarities to apoptosis from higher eukaryotes. DNA degradation and several other apoptotic-like processes have also been described in the parasitic protozoa Leishmania. However, the existence of an apoptotic death in this parasite is still a matter of controversy. Our results indicate that most of the processes of macromolecular degradation and organelle dysfunction observed in mammalian cells during apoptosis can also be reproduced in promastigotes of the genus Leishmania when incubated at temperatures above 38°C. These processes can be partially reversed by the expression of the anti-apoptotic mammalian gene Bcl-XL, which suggests that this family of apoptosis-regulating proteins was present very early in the evolution of eukaryotic cells.  相似文献   

13.
FtsZ1-1 and MinD plastid division-related genes were identified and cloned from Brassica oleracea var. botrytis. Transgenic tobacco plants expressing BoFtsZ1-1 or BoMinD exhibited cells with either fewer but abnormally large chloroplasts or more but smaller chloroplasts relative to wild-type tobacco plants. An abnormal chloroplast phenotype in guard cells was found in BoMinD transgenic tobacco plants but not in BoFtsZ1-1 transgenic tobacco plants. Transgenic tobacco plants bearing the macro-chloroplast phenotype had 10 to 20-fold increased levels of total FtsZ1-1 or MinD, whilst the transgenic tobacco plants bearing the mini-chloroplast phenotype had lower increased FtsZ1-1 or absence of detectable MinD. We also described for the first time, plastid transformation of macro-chloroplast bearing tobacco shoots with a gene cassette allowing for expression of green fluorescent protein (GFP). Homoplasmic plastid transformants from normal chloroplast and macro-chloroplast tobacco plants expressing GFP were obtained. Both types of transformants accumulated GFP at ~6% of total soluble protein, thus indicating that cells containing macro-chloroplasts can regenerate shoots in tissue culture and can stably integrate and express a foreign gene to similar levels as plant cells containing a normal chloroplast size and number.  相似文献   

14.
Transgenic tobacco plants expressing a cyanobacterial fructose-1,6/sedoheptulose-1,7-bisphosphatase targeted to chloroplasts show enhanced photosynthetic efficiency and growth characteristics under atmospheric conditions (360 p.p.m. CO2). Compared with wild-type tobacco, final dry matter and photosynthetic CO2 fixation of the transgenic plants were 1.5-fold and 1.24-fold higher, respectively. Transgenic tobacco also showed a 1.2-fold increase in initial activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco) compared with wild-type plants. Levels of intermediates in the Calvin cycle and the accumulation of carbohydrates were also higher than those in wild-type plants. This is the first report in which expression of a single plastid-targeted enzyme has been shown to improve carbon fixation and growth in transgenic plants.  相似文献   

15.
Using a conditional life or death screen in yeast, we have isolated a tomato (Lycopersicon esculentum) gene encoding a phospholipid hydroperoxide glutathione peroxidase (LePHGPx). The protein displayed reduced glutathione-dependent phospholipid hydroperoxide peroxidase activity, but differs from counterpart mammalian enzymes that instead contain an active seleno-Cys. LePHGPx functioned as a cytoprotector in yeast (Saccharomyces cerevisiae), preventing Bax, hydrogen peroxide, and heat stress induced cell death, while also delaying yeast senescence. When tobacco (Nicotiana tabacum) leaves were exposed to lethal levels of salt and heat stress, features associated with mammalian apoptosis were observed. Importantly, transient expression of LePHGPx protected tobacco leaves from salt and heat stress and suppressed the apoptotic-like features. As has been reported, conditional expression of Bax was lethal in tobacco, resulting in tissue collapse and membrane permeability to Evans blue. When LePHGPx was coexpressed with Bax, little cell death and no vital staining were observed. Moreover, stable expression of LePHGPx in tobacco conferred protection against the fungal phytopathogen Botrytis cinerea. Taken together, our data indicated that LePHGPx can protect plant tissue from a variety of stresses. Moreover, functional screens in yeast are a viable tool for the identification of plant genes that regulate cell death.  相似文献   

16.
Transgenic maize (Zea mays L.) and tobacco (Nicotiana tabacum Petit Havana SR1) plants have been generated, which overproduce a mitochondrial Nicotiana plumbaginifolia manganese superoxide dismutase (MnSOD) in chloroplasts. For this, the mature MnSOD-coding sequence was fused to a chloroplast transit peptide from a Pisum sativum ribulose-1,5-bisphosphate carboxylase (Rubisco) gene and expression of the chimeric gene was driven by the cauliflower mosaic virus (CaMV) 35S promoter. The transgenic MnSOD gene product was correctly targeted to the chloroplasts both in maize and tobacco. However, despite the use of the CaMV 35S promoter, the MnSOD was predominantly localized in the chloroplasts of the bundle sheath cells of maize. Furthermore, the transit peptide was cleaved off at a different position in maize and tobacco.  相似文献   

17.
Fungal apoptosis: function, genes and gene function   总被引:3,自引:0,他引:3  
Cells of all living organisms are programmed to self-destruct under certain conditions. The most well known form of programmed cell death is apoptosis, which is essential for proper development in higher eukaryotes. In fungi, apoptotic-like cell death occurs naturally during aging and reproduction, and can be induced by environmental stresses and exposure to toxic metabolites. The core apoptotic machinery in fungi is similar to that in mammals, but the apoptotic network is less complex and of more ancient origin. Only some of the mammalian apoptosis-regulating proteins have fungal homologs, and the number of protein families is drastically reduced. Expression in fungi of animal proteins that do not have fungal homologs often affects apoptosis, suggesting functional conservation of these components despite the absence of protein-sequence similarity. Functional analysis of Saccharomyces cerevisiae apoptotic genes, and more recently of those in some filamentous species, has revealed partial conservation, along with substantial differences in function and mode of action between fungal and human proteins. It has been suggested that apoptotic proteins might be suitable targets for novel antifungal treatments. However, implementation of this approach requires a better understanding of fungal apoptotic networks and identification of the key proteins regulating apoptotic-like cell death in fungi.  相似文献   

18.
The host-selective AAL toxins secreted by Alternaria alternata f sp lycopersici are primary chemical determinants in the Alternaria stem canker disease of tomato. The AAL toxins are members of a new class of sphinganine analog mycotoxins that cause cell death in both animals and plants. Here, we report detection of stereotypic hallmarks of apoptosis during cell death induced by these toxins in tomato. DNA ladders were observed during cell death in toxin-treated tomato protoplasts and leaflets. The intensity of the DNA ladders was enhanced by Ca2+ and inhibited by Zn2+. The progressive delineation of fragmented DNA into distinct bodies, coincident with the appearance of DNA ladders, also was observed during death of toxin-treated tomato protoplasts. In situ analysis of cells dying during development in both onion root caps and tomato leaf tracheary elements revealed DNA fragmentation localized to the dying cells as well as the additional formation of apoptotic-like bodies in sloughing root cap cells. We conclude that the fundamental elements of apoptosis, as characterized in animals, are conserved in plants. The apoptotic process may be expressed during some developmental transitions and is the functional process by which symptomatic lesions are formed in the Alternaria stem canker disease of tomato. Sphinganine analog mycotoxins may be used to characterize further signaling pathways leading to apoptosis in plants.  相似文献   

19.
20.
Mitochondrial involvement has not been identified in the programmed cell death (PCD) of leaf senescence which suggests that processes such as those involving reactive oxygen species (ROS) are controlled by chloroplasts. We report that transgenic tobacco (DeltandhF), with the plastid ndhF gene knocked-out, shows low levels of the plastid Ndh complex, homologous to mitochondrial complex I, and more than a 30-day-delay in leaf senescence with respect to wt. The comparison of activities and protein levels and analyses of genetic and phenotypic traits of wtxDeltandhF crosses indicate that regulatory roles of mitochondria in animal PCD are assumed by chloroplasts in leaf senescence. The Ndh complex would increase the reduction level of electron transporters and the generation of ROS. Chloroplastic control of leaf senescence provides a nonclassical model of PCD and reveals an unexpected role of the plastid ndh genes that are present in most higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号