首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M P Rols  F Dahhou  K P Mishra  J Teissié 《Biochemistry》1990,29(12):2960-2966
Cells can be made temporarily permeable if pulsed by high-intensity short-duration electric fields. The molecular mechanisms underlying this electropermeabilization are still unknown. The kinetic events may be described by four successive steps: induction, expansion, stabilization, and resealing. On one hand, cell electropermeabilization is detected only under more stringent conditions when cells have been treated by ethanol. On the other hand, lysolecithin is observed to facilitate cell electropermeabilization. More precisely, these molecules that modify membrane order, when used in concentrations compatible with cell viability, are shown to affect only the expansion and resealing steps. Electropermeabilization is inducing a transition in the membrane organization. Membrane order is modulating the energy barrier needed to evoke this membrane transition which occurs when cells are submitted to a field larger than a characteristic threshold (expansion step). Less order would increase the magnitude of this energy barrier; more order would decrease it.  相似文献   

2.
Mammalian cells exposed to electric field pulses of nanosecond duration (nsPEF; 60-ns, 12 kV/cm) experienced a profound and long-lasting increase in passive electrical conductance (Gm) of the cell membrane, probably caused by opening of stable conductance pores (CPs). The CPs were permeable to Cl and alkali metal cations, but not to larger molecules such as propidium iodide (PI). CPs gradually resealed; the process took minutes and could be observed even in dialyzed cells and in ATP- and glucose-free solutions. Cells subjected to long nsPEF trains (up to 200 pulses) underwent severe and immediate necrotic transformation (cell swelling, blebbing, cytoplasm granulation), but remained impermeable to PI for at least 30-60 min after the exposure. Both Gm increase after short nsPEF trains and necrotic changes after long nsPEF trains were cell type-dependent: they were much weaker in HeLa than in GH3 cells. La3+ and Gd3+ ions significantly inhibited the nsPEF-induced Gm increase (probably by blocking the CPs), and effectively protected intensely exposed cells from developing necrosis. We conclude that plasma membrane permeabilization is the principal cause of necrotic transformation in nsPEF-exposed cells and probably contributes to other known nsPEF bioeffects.  相似文献   

3.
Electropermeabilization is a promising nonviral method for gene therapy. However, despite the fact that it is widely used to transfer genes into living cells, the steps that limit DNA transfer remain to be determined. Here, we report the effect of cell synchronization on membrane permeabilization and gene delivery by electric fields.Chinese hamster ovary (CHO) cells were synchronized by aphidicolin or butyrate treatment. Electro-mediated transfection of these cells was evaluated under electric field conditions leading to the same level of membrane permeabilization.Aphidicolin cell synchronization in G2/M phase leads to a slight increase in plasma membrane permeabilization but to a three-fold increase in percentage of transfected cells and to an eight-fold increase in gene expression. This increase in cell transfection is specifically due to the G2/M synchronization process. Indeed, cell synchronization in G1 phase by sodium butyrate has no effect on cell permeabilization and transfection.Our results suggest that the enhanced transfection level in G2/M phase is not simply due to enhanced permeabilization, but reinforce the statement that the melting of the nuclear membrane facilitates direct access of plasmid DNA to the nucleus.  相似文献   

4.
R. Benz  U. Zimmermann 《Planta》1981,152(4):314-318
The electrical breakdown behavior of the giant algal cell Halicystis parvula was studied in order to predict the optimum conditions for electrically induced cell-to-cell fusion. Using the charge pulse technique, the membranes were charged at different pulse lengths to the maximum voltage Vc. Because of a reversible, high-conductance state of the membrane (electrical breakdown), it was not possible to exceed the critical membrane breakdown potential. The breakdown voltage exhibited a strong dependence on the charging time (pulse length) between 10 s and 100 s. Below 10 s the breakdown voltage of the two membranes, tonoplast and plasmalemma, assumed a constant value of about 1.9 V, whereas above a pulse length of about 100 s the breakdown voltage was nearly constant with a value of about 0.6 V. The extreme values for the breakdown voltage at very short and at very long charging times agree fairly well with results which have been obtained on cells of Valonia utricularis and planar lipid bilayer membranes. However, the pulse length dependence of the breakdown voltage was found to be quite different in H. parvula. In addition, the membrane conductance increase during breakdown in H. parvula cells is much more pronounced than in membranes of V. utricularis, but similar to lipid bilayer membranes. From this result it is suggested that the membrane structure of H. parvula is quite different from V. utricularis (larger lipid domains).  相似文献   

5.
6.
Application of ultrasound transiently permeabilizes cell membranes and offers a nonchemical, nonviral, and noninvasive method for cellular drug delivery. Although the ability of ultrasound to increase transmembrane transport has been well demonstrated, a systematic dependence of transport on ultrasound parameters is not known. This study examined cell viability and cellular uptake of calcein using 3T3 mouse cell suspension as a model system. Cells were exposed to varying acoustic energy doses at four different frequencies in the low frequency regime (20-100 kHz). At all frequencies, cell viability decreased with increasing acoustic energy dose, while the fraction of cells exhibiting uptake of calcein showed a maximum at an intermediate energy dose. Acoustic spectra under various ultrasound conditions were also collected and assessed for the magnitude of broadband noise and subharmonic peaks. While the cell viability and transport data did not show any correlation with subharmonic (f/2) emission, they correlated with the broadband noise, suggesting a dominant contribution of transient cavitation. A theoretical model was developed to relate reversible and irreversible membrane permeabilization to the number of transient cavitation events. The model showed that nearly every stage of transient cavitation, including bubble expansion, collapse, and subsequent shock waves may contribute to membrane permeabilization. For each mechanism, the volume around the bubble within which bubbles induce reversible and irreversible membrane permeabilization was determined. Predictions of the model are consistent with experimental data.  相似文献   

7.
Effect of electric field gradients on lipid monolayer membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Externally applied nonuniform electric fields can strongly affect thermodynamic phases in a lipid monolayer when applied under conditions of temperature, pressure, and composition that are near phase boundaries. Under such conditions nonuniform applied fields can produce or suppress phase separations. Field-induced phase-separated domains have sizes that are in good agreement with calculations. Field gradients can also produce large concentration gradients in binary mixtures just above their critical points. The present work elaborates our earlier studies of these field effects using thermodynamic models of the phase behavior of two-component liquid mixtures. The calculations are of interest in connection with biological membranes that, at the growth temperature, are in a liquid state close to a phase boundary.  相似文献   

8.
Treatment of erythrocyte ghosts in random positions in a suspension with membrane fusion-inducing direct current electric field pulses causes the membranes to become fusogenic. Significant fusion yields are observed if the membranes are dielectrophoretically aligned into membrane-membrane contact with a weak alternating electric field as much as 5 min after the application of the pulses. This demonstrates that a long-lived membrane structural alteration is involved in this fusion mechanism. Other experiments indicate that the areas on the membrane which become fusogenic after treatment with the pulses may be very highly localized. The locations of these fusogenic areas coincide with where the trans-membrane electric field strength was greatest during the pulse. The fusogenic membrane alteration, or components thereof, in these areas laterally diffuses very slowly or not at all, or, to be fusogenic, must be present at concentrations in the membrane above a certain threshold. The loss of soluble 0.9-3-nm-diameter fluorescent probes from resealed cytoplasmic compartments of randomly positioned erythrocyte ghosts occurs through electric field pulse-induced pores only during a pulse but not between pulses or after a train of pulses if the probe diameter is 1.2 nm or greater. For a given pulse treatment of membranes in random positions in suspensions, an increase in ionic strength of the medium results in (a) a decrease in loss during the pulse, (b) no difference in loss between pulses, and (c) an increase in fusion yield when membrane-membrane contact is established. The latter two results (b and c) are incompatible with a fusion mechanism that proposes a simple relationship between electric field-induced pores and fusion.  相似文献   

9.
10.
BackgroundStrong electric fields are known to affect cell membrane permeability, which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on how this affects the cell membrane permeability.MethodWe here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.Results and conclusionsWe show how oxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.General significanceThis study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.  相似文献   

11.
Ultrashort electric pulse induced changes in cellular dielectric properties   总被引:1,自引:0,他引:1  
The interaction of nanosecond duration pulsed electric fields (nsPEFs) with biological cells, and the models describing this behavior, depend critically on the electrical properties of the cells being pulsed. Here, we used time domain dielectric spectroscopy to measure the dielectric properties of Jurkat cells, a malignant human T-cell line, before and after exposure to five 10ns, 150kV/cm electrical pulses. The cytoplasm and nucleoplasm conductivities decreased dramatically following pulsing, corresponding to previously observed rises in cell suspension conductivity. This suggests that electropermeabilization occurred, resulting in ion transport from the cell's interior to the exterior. A delayed decrease in cell membrane conductivity after the nsPEFs possibly suggests long-term ion channel damage or use dependence due to repeated membrane charging and discharging. This data could be used in models describing the phenomena at work.  相似文献   

12.
The long-lived fusogenic state induced in spherical-shaped erythrocyte ghosts by electric field pulses (Sowers, A.E. 1984. J. Cell Biol. 99:1989-1996; Sowers, A.E. 1986. J. Cell Biol. 102:1358-1362) was studied in terms of how the fusion yield depended on both (a) the location where membrane-membrane contact took place with respect to the orientation of the electric pulse and (b) the time interval between the pulse treatment and membrane-membrane contact. Fusion yields were greater for membrane-membrane contact locations closer to where the pulse-induced transmembrane voltage was expected to be greatest and showed a time interval-dependent accelerating decay. The portion of the membrane that became fusogenic included the area up to a latitude of approximately 38 degrees of arc towards the equators of the membranes. A time interval-dependent increase or decrease in rate of decay in the fusion yield for membrane-membrane contacts induced closer to the equator of the membranes did not occur showing that the pulse-induced fusogenic state is immobile in the early 5-45-s interval after induction and has a rate of decay, which does not permit long time interval changes in lateral position to be measured.  相似文献   

13.
The behaviour of lipid bilayer membranes, made of oxidized cholesterol, and UO22+-modified azolectin membranes in a high electric field has been investigated using the voltage clamp method. When a voltage pulse is applied to the membrane of these compositions, the mechanical rupture of the membranes is preceded by a gradual conductance increase which remains quite reversible till a certain moment. The voltage drop at this reversible stage of breakdown leads to a very rapid (characteristic time of less than 5 μs) decrease in the membrane conductance. At repeated voltage pulses of the same amplitude with sufficient intervals between them (approx. 10 s), the current oscillograms reflecting the reversible resistance decrease are well reproduced on the same membrane. The time of attainment of the predetermined level of the membrane conductance is strongly dependent on voltage. At different stages of breakdown we have investigated changes in the conductance of UO22+-modified membrane after the application of two-step voltage pulses, the kinetics of development of the reversible decrease in the membrane resistance in solutions of univalent and divalent ions, and also the influence of sucrose and hemoglobin on the current evolution. The relationship between the reversible conductance increase, the reversible electrical breakdown [15] and the rupture of membrane in an electric field is discussed. We propose the general interpretation of these phenomena, based on the representation of the potential-dependent appearance in the membrane of pores, the development of which is promoted by an electric field.  相似文献   

14.
The transmembrane potential generated by an alternating electric field (ac) depends strongly on the frequency of the field and can be calculated using the Schwan Equation. We have measured the critical electric breakdown potential, delta psi crit, of the plasma membrane of murine myeloma cell line (Tib9) using ac fields, by monitoring the entry of a fluorescence probe, propidium iodide, into the cells. This dye is weakly fluorescent in solution but becomes strongly fluorescent when it binds to DNA. Experiments were done under a microscope by direct visual examination of single cells or by examining photographic prints. When an ac field reached the intensity, Ecrit, that generated a maximal membrane potential delta psi max, equal to or greater than the delta psi crit, the membrane was perforated at the two loci facing the electrodes. The dye diffused into the cell, giving rise to two bright, narrow bands, which expanded to the whole cell in 1-3 min. delta psi crit's were measured in three media of different resistivities, rho ext, (52,600, 7,050, and 2,380 omega cm), over the range of 0.1-300 kHz, with the field duration of 200 ms. Regression analysis based on the Schwan Equation showed that in a medium of given resistivity, the delta psi crit was constant over the frequency range studied. When the capacitance of the membrane, Cmembr, was taken to be 0.90 microF cm-2, the resistivity of the cytoplasmic medium, rho int, was determined to be 910-1,100 omega cm. The delta psi crit were 0.33, 0.48, and 0.53 V, respectively, for the three media in decreasing resistivities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Generation of action potential (AP) in plasma membranes of characean algae has a strong impact on photoreactions occurring in chloroplasts. Under physiological conditions, AP suppresses electron transport in alkaline and acidic regions, although to a different extent; these changes are transient and reversible. In the presence of the artificial electron acceptor, methyl viologen (MV2+), AP-induced changes in electron transport in photosystem II become irreversible. Incubation of Chara corallina internodal cells with MV2+ has no effect on the chlorophyll P700 photooxidation kinetics in photosystem I reaction centers, suggesting that MV2+ is inaccessible for interactions with photosystem I, because its permeation into chloroplasts of a resting cell is hindered by membrane barriers. At the same time, AP generation in the presence of MV2+ is accompanied by irreversible modification of P700 photooxidation kinetics, as can be evidenced from differences in absorption changes at 810 and 870 nm (ΔA 810 signals). These findings suggest that MV2+ permeation into chloroplasts in situ is facilitated during or after the AP generation. Similar to the ΔA 810 signals, light-induced changes in membrane potential do not depend on the presence of MV2+ in the external medium until the first excitatory stimulus is applied. Electric photoresponses of the cell are irreversibly modified by AP generated in the presence of MV2+ at the expense of non-cyclic photosynthetic electron transport redirected to the MV2+ reduction. It is concluded that AP effects on chloroplast photosynthesis in situ are complex and involve permeability changes for MV2+ in membrane barriers of the “plasmalemma-chloroplast envelope” system.  相似文献   

16.
In this study, we determined the LD(50) (50% lethal dose) for cell death, and the ED(50) (50% of cell population staining positive) for propidium (Pr) iodide uptake, and phosphatidylserine (PS) externalization for several commonly studied cell lines (HeLa, Jurkat, U937, CHO-K1, and GH3) exposed to 10-ns electric pulses (EP). We found that the LD(50) varied substantially across the cell lines studied, increasing from 51 J/g for Jurkat to 1861 J/g for HeLa. PS externalized at doses equal or lower than that required for death in all cell lines ranging from 51 J/g in Jurkat, to 199 J/g in CHO-K1. Pr uptake occurred at doses lower than required for death in three of the cell lines: 656 J/g for CHO-K1, 634 J/g for HeLa, and 142 J/g for GH3. Both Jurkat and U937 had a LD(50) lower than the ED(50) for Pr uptake at 780 J/g and 1274 J/g, respectively. The mechanism responsible for these differences was explored by evaluating cell size, calcium concentration in the exposure medium, and effect of trypsin treatment prior to exposure. None of the studied parameters correlated with the observed results suggesting that cellular susceptibility to injury and death by 10-ns EP was largely determined by cell physiology. In contrast to previous studies, our findings suggest that permeabilization of internal membranes may not necessarily be responsible for cell death by 10-ns EP. Additionally, a mixture of Jurkat and HeLa cells was exposed to 10-ns EP at a dose of 280 J/g. Death was observed only in Jurkat cells suggesting that 10-ns EP may selectively kill cells within a heterogeneous tissue.  相似文献   

17.
Asymmetric breakdown (occurring in only one hemisphere of the cell) was induced in freely suspended and dielectrophoretically aligned vacuole-containing or evacuolated plant protoplasts as well as in isolated vacuoles. In suspended cells breakdown was restricted to the hemisphere facing the anode and in isolated vacuoles to the opposite hemisphere. This difference in the orientation of the asymmetric breakdown can be explained by the opposite direction of the intrinsic membrane potentials of isolated vacuoles and of cells on which the generated potential difference is superimposed. The ensuing permeabilization of the membrane was microscopically monitored by dye uptake and by release of chloroplasts and of cytoplasmic and/or vacuolar solutes. The asymmetric release of intracellular substances (organic acids and/or amino acids) was detected by accumulation of chemotactic bacteria (Pseudomonas aeruginosa) close to the permeabilised membrane area of the cells or vacuoles. Maximum bacteria accumulation required about 5 min and subsequently disappeared after a further 20 min presumably because of the restoration of the original membrane impermeability. With vacuoles retention of the accumulated bacteria was shorter indicating that the resealing process of the tonoplast membrane was faster than that of the plasmalemma. From the kinetics of bacteria accumulation and retention it is therefore possible to deduce information about the life-span and the resealing properties of electropermeabilized membrane areas on the single-cell level. Symmetric breakdown in both hemispheres of the cells could be achieved by electric field-mediated cell rotation of about 180 degrees between two pulses of the same polarity or by application of two pulses of alternating polarity. In dielectrophoretically aligned protoplasts of comparable diameter, breakdown occurred in both hemispheres, even though the breakdown was still asymmetric. It could be demonstrated by the uptake of the vital dye neutral red that the size of the membrane area which was permeabilized was much larger in that hemisphere oriented to the anode than in the other one. The relevance of these observations for further improvement of electroinjection of macromolecules and of electrofusion is discussed. In particular, it is pointed out that positioning of differently sized cells in electric field-mediated hybridisation and the polarity of the breakdown pulse is of great importance with respect to hybrid yield.  相似文献   

18.
The mechanism of membrane fusion was studied by using human erythrocyte ghosts held in close contact by alternating current-induced dielectrophoresis and inducing fusion with a single electric field pulse. Individual fusion events were followed visually using either 1,1'-dihexadecyl-3,3,3',3'-tetramethylindo carbocyanine perchlorate as a membrane-mixing label or 10-kD fluorescein isothiocyanate-dextran as a contents-mixing label. However, over a range of variables, the number of contents-mixing events usually considerably exceeded the number of membrane-mixing events, although the discrepancy was less at higher ionic strength. However, when the dielectrophoretic force holding the membranes in contact was turned off after the pulse, Brownian motion caused some of the groups of ghosts in which contents mixing occurred to eventually separate from one another, showing that they could not represent fusion events. Separate experiments showed, conversely, that fusion did occur in the groups that did not separate after the dielectrophoresis was turned off.  相似文献   

19.
Cell poration and cell fusion using an oscillating electric field.   总被引:9,自引:5,他引:9       下载免费PDF全文
It has been shown in previous studies that cell poration (i.e., reversible permeabilization of cell membrane) and cell fusion can be induced by applying a pulse (or pulses) of high-intensity DC (direct current) electric field. Recently we suggested that such electro-poration or electro-fusion can also be accomplished by using an oscillating electric field. The DC field relies solely on the dielectric breakdown of the cell membrane to induce cell fusion. The oscillating field, on the other hand, can produce not only a dielectric breakdown, but also a sonicating motion in the membrane that could result in a structural fatigue. Thus, a combination of a DC field and an oscillating field is expected to enhance the efficiency of cell poration and cell fusion. This study is an experimental test of such an idea. Here, pulses of high-intensity, DC-shifted RF (radio frequency) electric field were used to induce cell poration and cell fusion. The fusion experiments were done on human red blood cells. The poration experiments were done on a fibroblast cell line using a molecular probe (which is a DNA plasmid containing the marker gene chloramphenicol acetyltransferase, CAT) and assayed by a gene transfection technique. It was found that the pulsed RF field is highly efficient in both cell fusion and cell poration. Also, in comparison with electro-poration using a DC field, the RF field results in a higher percentage of cells surviving the exposure to the electric field.  相似文献   

20.
Cochlear outer hair cell bending in an external electric field.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have used a high-resolution motion analysis system to reinvestigate shape changes in isolated guinea pig cochlear outer hair cells (OHCs) evoked by low-frequency (2-3 Hz) external electric stimulation. This phenomenon of electromotility is presumed to result from voltage-dependent structural changes in the lateral plasma membrane of the OHC. In addition to well-known longitudinal movements, OHCs were found to display bending movements when the alternating external electric field gradients were oriented perpendicular to the cylindrical cell body. The peak-to-peak amplitude of the bending movement was found to be as large as 0.7 microm. The specific sulfhydryl reagents, p-chloromercuriphenylsulfonic acid and p-hydroxymercuriphenylsulfonic acid, that suppress electrically evoked longitudinal OHCs movements, also inhibit the bending movements, indicating that these two movements share the same underlying mechanism. The OHC bending is likely to result from an electrical charge separation that produces depolarization of the lateral plasma membrane on one side of the cell and hyperpolarization on the other side. In the cochlea, OHC bending could produce radial distortions in the sensory epithelium and influence the micromechanics of the organ of Corti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号