首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In various populations of the cultivated and weedy amaranth species, the electrophoretic patterns of alcohol dehydrogenase (ADH), glutamate dehydrogenase (GDH), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH) and malic enzyme (Me) were studied. In total, 52 populations and two varieties (Cherginskii and Valentina) have been examined. Allozyme variation of this material was low. Irrespective of species affiliation, 26 populations and two varieties were monomorphic for five enzymes; a slight polymorphism of three, two, and one enzymes was revealed in three, nine, and fourteen populations, respectively. A single amaranth locus, Adh, with two alleles, Adh F and Adh S, controls amaranth ADH. Two alleles, common Gdh S and rare Gdh F, control GDH; no heterozygotes at this locus were found. The MDH pattern has two, the fast- and slow-migrating, zones of activity (I and II, respectively). Under the given electrophoresis conditions, the fast zone is diffuse, whereas slow zone is controlled by two nonallelic genes, monomorphic Mdh 1 and polymorphic Mdh 2 that includes three alleles: Mdh 2-F, Mdh 2-N, and Mdh 2-S. Low polymorphism of IDH and Me was also found, though their genetic control remains unknown.  相似文献   

2.
Electrophoretic spectra of alcohol dehydrogenase (ADH), glutamate dehydrogenase (GDH), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH), and malic enzyme (ME) in different amaranth populations has been studied using a starch gel electrophoresis. 93 populations and 4 cultivars of amaranth have been analyzed. Some populations have been proved to be polymorphic that provided a possibility of a genetic control of the above-mentioned enzymes. The isozyme variability of the studied amaranth populations is low; all studied loci are found to be monomorphic for 73 populations and 4 cultivars. Some populations demonstrate a polymorphism in separate loci (Adh, Mdh 2, Gdh, Idh 1, Idh 2, and Mod 2). The obtained results evidence the presence of a genetic monomorphism in amaranth concerning the loci studied.  相似文献   

3.
Subcellular localization of isozymes of NAD-dependent malate dehydrogenase (MDH) in sugar beet was studied. Isozymes ss and ll controlled by loci Mdh2 and Mdh3, respectively, were shown to locate in mitochondria, whereas isozyme pp controlled by locus Mdh1, in microbodies. All examined samples lack hybrid MDH isozymes, which could testify to the interaction between products of nonallelic Mdh genes. This can be explained by the localization of nonallelic isozymes in various compartments of the cell and organelles.  相似文献   

4.
Starch gel electrophoresis was used for isozyme analysis of ADH, GDH, MDH, IDH, and ME in populations of amaranth. Experiments were performed with 93 populations and 4 cultivars. Some populations proved to be polymorphic, and this fact allowed analysis of the genetic control of the enzymes listed. The populations examined showed poor allozyme variability. Monomorphism for all loci studied was observed in 73 populations and 4 varieties. Starch gel electrophoresis was used for isozyme analysis ofADH, GDH, MDH, IDH, and ME in populations of amaranth. Experiments were performed with 93 populations and 4 cultivars. Some populations proved to be polymorphic, and this fact allowed analysis of the genetic control of the enzymes listed. The populations examined showed poor allozyme variability. Monomorphism for all loci studied was observed in 73 populations and 4 varieties. Only some populations demonstrated rare polymorphism for a single locus each: Adh, Mdh 2, Gdh, Idh 1, Idh 2, or Mod 2. The results demonstrate genetic monomorphism of amaranth for the studied loci.  相似文献   

5.
The results of studying the polymorphism and genetic structure of populations of D. salina and D. incarnata growing in Zabaykalsky krai and Buryatia are represented according to the data of allozyme analysis of eight genetic loci (PGI, NADHD, SKDH, GDH, PGM, DIA, ADH, and IDH). The specificity of the allelic structure of loci SKDH, PGM, and IDH is established, for which D. salina and D. incarnata reliably differ from each other. It is shown that interspecies introgressive hybrid complexes with different genetic structures were formed in Transbaikalia. Places of mass growth of D. incarnata were observed to have single plants of D. salina, the interspecies hybrids of the first and subsequent generations. Places of mass growth of D. salina were observed to contain only the hybrids that are not hybrids of the first generation. They were heterozygous not for three loci with differentiating alleles of both parents, SKDH, PGM, and IDH, but for only one of them. The degree of genetic differentiation among five populations of D. salina was on average 7.5% and that of D. incarnata was 7.1%, which in accordance with Wright’s estimation relates to mean values. The average value of FST for all studied populations of the two related species of the genus Dactylorhiza was 0.478, indicating a very high degree of genetic differentiation between D. salina and D. incarnata growing in Transbaikalia. The greatest differences between the species are for the allelic structure of loci SKDH, PGM, and IDH (FST was equal to 0.705, 0.976, and 0.762, respectively). Analysis of molecular variance (AMOVA) showed that populations of D. salina and D. incarnata in the zone where their ranges in Zabaykalsky krai and Buryatya overlap have essential differences both for the variation of alleles frequencies of eight loci (71%, d.f. = 9) and for the variability of genotypes (61%, d.f. = 9). Despite the fact that D. salina and D. incarnata explicitly share a gene flow as a result of interspecies hybridization, the genetic differentiation of populations of these related species remains at a high level.  相似文献   

6.
Analysis of the structural polymorphism of eight genes in Sinorhizobium meliloti (nodA, nodB, nodC, and nodH, as well as betA, betB, betC, and betB2) involved in virulence control and salt tolerance, respectively, was carried out in native populations from two geographically distant areas of alfalfa diversity. These areas are located in the North Caucasian gene center of cultivated plants (NCG) and in the modern center of introgressive hybridization of alfalfa located next to the Aral Sea area (PAG) subjected to salinization. RFLP types (alleles) of the nod and bet genes, similar to those in the reference strain Rm1021 (A-type) and different from them (divergent, or D-type alleles) were revealed. The combinations for A- and D-type alleles of the aforementioned genes (analysis of the linkage disequilibrium, LD) were studied in both populations. It was shown that D-type alleles of the nod genes were two times more frequent in the NCG population, while D-type alleles of the bet genes were predominantly identified in the PAG population. At the same time, different combinations of D-type alleles of both the nod and bet genes prevailed in populations. For instance, in the case of the glycine betaine metabolism pathway, these were the betC and betB2 genes in NCG population and betB and betA genes in PAG population. The state of linkage disequilibrium was shown for 60.7% of combinations of alleles of the nod and bet genes in the S. meliloti strains from NCG and more than twice less in strains from the PAG population. It was concluded that clonal lines prevailed in NCG, while the PAG population of S. meliloti had a panmictic structure with revealed single clonal lines.  相似文献   

7.
The genetic diversity, subdivision, and differentiation of nine populations of Norway spruce (Picea abies (L.) Karst.) in Ukrainian Carpathians were studied using electrophoretic analysis of variability of enzyme systems in 346 trees aged from 80 to 150 years. Based on electrophoretic fractionation of enzymes extracted from seed endosperms in vertical slabs of 7.5% polyacrylamide gel, 20 loci of nine enzyme systems (ADH, ACP, DIA, GDH, GOT, MDH, LAP, FDH, SOD) were identified, and 71 allele variant were revealed. Each tree was heterozygous on average in 15.8% of its genes. The populations were characterized by low subdivision (F ST = 0.017) and differentiation (D N = 0.005). The main contribution to heterogeneity of population genetic structure was made by loci Dia-3, Lap-1, and Sod-3. Clustering and multivariate analysis revealed no observed trends in geographical or altitudinal position of the populations.  相似文献   

8.
For the first time, an analysis was carried out of allozyme variability in trout (Salmo trutta) from three rivers of Iran. We studied 23 gene loci coding enzymes: glycerol-3-phosphate dehydrogenase (G3PDH), aspartate aminotransferase (AAT), malate dehydrogenase (MDH), lactate dehydrogenase (LDH), creatine kinase (CK), malic enzyme [NADP-dependent MDH] (MEP), superoxide dismutase (SOD), esterase (EST), and esterase D (EST-D). The obtained data demonstrate the similarity between the trout samples from different rivers of Iran according to genetic characteristics. Taking into account the differences by allozyme markers of allele frequencies and allele composition of some loci, we should expect that Iranian trout diverges significantly in genetics from the other trout populations of the Caspian Sea.  相似文献   

9.
10.
Electrophoresis in starch gel has been used to study the polymorphism of hordeins encoded by loci Hrd A, Hrd B, and Hrd F in 140 local barley populations from the Near East, including 60, 34, 33, 8, and 5 populations from Syria, Jordan, Iraq, Palestine, and Israel, respectively. Fifty-seven Hrd A, 87 Hrd B, and 5 Hrd F alleles have been found. The alleles of these loci considerably differ in frequencies and distribution in populations from different Near Eastern countries. Cluster analysis of the matrix of the frequencies of alleles of hordei-coding locus alleles in barley populations from the Near East, North Africa, Ethiopia, and South Arabia has yielded two clusters. The first cluster includes barley populations from Israel, Palestine, Morocco, Tunisia, Algeria, and Egypt; the second cluster, populations from Iraq, Syria, Jordan, Yemen, and Ethiopia.  相似文献   

11.
Swiss stone pine Pinus cembra L. is a species with fragmented range, occurring in the Alpine-East Carpathian mountain system. Seeds of P. cembra are dispersed by nutcrackers, which offers potential possibilities for gene exchange among populations. Using isozyme analysis, we have examined five samples from two parts of the Swiss stone pine range: the Alps (Switzerland and Austria) and the Carpathians (two samples from the northern macroslope of the Gorgany Ridge, Eastern Carpathians, Ivano-Frankivs'ka oblast and one sample from Zakarpats'ka oblast of Ukraine). The allele frequencies of 30 isozyme loci, coding for enzymes ADH, FDH, FEST, GDH, GOT, IDH, LAP, MNR, MDH, PEPCA, 6-PGD, PGI, PGM, SDH, SKDH, SOD, were analyzed using cluster analysis and Principal Component Analysis. Two clusters, corresponding to the isolated Alpine and Carpathian parts of the range, were found. The main contribution to these differences were made by loci Adh-1, Adh-2, Fest-2, Lap-3, Mdh-4, and Sod-4. The interpopulation differentiation proved to be somewhat higher than that typical for pines (FST = 7.4%), but within the limits characteristic for taxonomically close species. Thus, isolation of the populations did not lead to their marked differentiation, which may be explained by gene flow and balancing selection, which equalizes gene frequencies across the fragmented species area. Interlocus (FST heterogeneity (from 0.003 to 0.173) suggests adaptive significance of some of the allozyme polymorphisms or linkage of some loci with adaptive genes. The Carpathian populations were shown to have higher gene diversity than the Alpine ones (expected heterozygosities 0.095–0.114 and 0.060–0.080, respectively). A deficiency of heterozygotes (as compared to the Hardy-Weinberg proportions), observed in the embryo sample, was probably explained by inbreeding. The reduction in the area of Carpathian pine forests in Holocene, caused by the global climatic changes and the anthropogenic impact, is hazardous for the gene pool of the species. The maintenance of genetic uniqueness of both Carpathian populations of P. cembra in general, and individual stands in particular, requires special measures for protection of Swiss stone pine in the Eastern Carpathians.  相似文献   

12.
The metabolic pathways of one-carbon compounds utilized by colorless sulfur bacterium Beggiatoa leptomitoformis D-402 were revealed based on comprehensive analysis of its genomic organization, together with physiological, biochemical and molecular biological approaches. Strain D-402 was capable of aerobic methylotrophic growth with methanol as a sole source of carbon and energy and was not capable of methanotrophic growth because of the absence of genes of methane monooxygenases. It was established that methanol can be oxidized to CO2 in three consecutive stages. On the first stage methanol was oxidized to formaldehyde by the two PQQ (pyrroloquinolinequinone)-dependent methanol dehydrogenases (MDH): XoxF and Mdh2. Formaldehyde was further oxidized to formate via the tetrahydromethanopterin (H4MPT) pathway. And on the third stage formate was converted to CO2 by NAD+-dependent formate dehydrogenase Fdh2. Finally, it was established that endogenous CO2, formed as a result of methanol oxidation, was subsequently assimilated for anabolism through the Calvin–Benson–Bassham cycle. The similar way of one-carbon compounds utilization also exists in representatives of another freshwater Beggiatoa species—B. alba.  相似文献   

13.
The Cf-9 gene in the tomato is known to confer resistance against leaf mold disease caused by Cladosporium fulvum, and a gene-based marker targeted to the Cf-9 allele has been widely used as a crop protection approach. However, we found this marker to be misleading in genotyping. Therefore, we developed new single-nucleotide polymorphism (SNP) and insertion and deletion (InDel) markers targeted to the Cf-9 allele in order to increase genotyping accuracy and facilitate high-throughput screening. The DNA sequences of reported Cf-9, cf-9, Cf-0, and closely related Cf-4 alleles were compared, and two functional and non-synonymous SNPs were found to distinguish the Cf-9 resistance allele from the cf-9, Cf-0, and Cf-4 alleles. An SNP marker including these two SNPs was developed and applied to the genotyping of 33 tomato cultivars by high-resolution melting analysis. Our SNP marker was able to select all three Cf-9 genotypes (resistant, heterozygous, and susceptible alleles). Interestingly, two cultivars were grouped separately from these three genotypes. To further examine this outgroup, we preformed polymerase chain reaction (PCR) on two InDel regions identified by sequence comparison of the Cf-9 and Cf-4 genes. The band patterns revealed that these two cultivars carried Cf-4 rather than Cf-9 alleles and that three cultivars classified in the Cf-9 resistance group actually carried both Cf-9 and Cf-4 genes. To determine whether these genotyping results were consistent with disease resistance phenotypes, we examined the induction of a hypersensitive response by transiently expressing the corresponding effector genes, and found that the results matched perfectly with the genotyping results. These findings indicate that the combination of our SNP and InDel markers allows resistant Cf-9 alleles to be distinguished from cf-9 and Cf-4 alleles, which will be useful for marker-assisted selection of tomato cultivars resistant to C. fulvum.  相似文献   

14.
Glutamine synthetase (GS), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) are closely related enzymes in plant nitrogen metabolism and potential targets for improving nitrogen use efficiency. However, little research has focused on the enzyme-encoding genes in tomato. Here, a comprehensive study of these genes was conducted. Six GS genes, two GOGAT genes and five GDH genes were identified in tomato. Bioinformatics and gene expression analyses suggested that these genes evolved species-specific regulatory properties and biological functions in tomato. SlNADH-GOGAT, SlGS1.1 and SlNAD-GDHB1 were abundantly expressed in roots, SlGS1.1 can be induced by nitrogen deprivation, and SlGS1.2, SlGS1.3, SlNADH-GOGAT and SlNAD-GDHB1 can be induced by the re-supply of nitrogen after 5 days of deprivation, they may play key roles in primary nitrogen assimilation. SlFd-GOGAT, SlGS1.1 and SlNAD-GDHA1-A2 were also highly expressed in fruits, indicating their important roles in fruit development and ripening. Tomato GS, GOGAT and GDH may be involved in stress responsiveness, since most of these genes modified their expression levels under drought, cold or heat stress treatment. We believe these findings will assist in the exploration of the genes’ biological functions and regulatory mechanisms, as well as the studies to improve nitrogen use efficiency, stress resistance and fruit quality in tomato.  相似文献   

15.
We isolated and characterized microsatellite loci in Viola websteri (Violaceae), an endangered species from Korea and endemic to Northeast Asia. A total of 27 microsatellite loci were developed and tested in Korean and Chinese populations. The number of alleles per locus varied from two to eight. The observed and expected heterozygosities within two populations were 0.000 to 1.000 and 0.080 to 0.816, respectively. Korean and Chinese populations were clearly distinguished by the private alleles from 16 loci. A total of 21 loci out of the 27 developed loci were successfully cross-amplified in 39 other Viola species. We believe that these microsatellite loci will be useful for future studies on genetic diversity and population structure of V. websteri, as well as other Viola species.  相似文献   

16.
Electrophoresis in starch gel was used to study the polymorphism of hordeins controlled by loci Hrd A, Hrd B, and Hrd F in 89 accessions of the local barleys from South Arabia (Yemen). Overall, 36 alleles were detected for locus Hrd A; 48 alleles, for Hrd B; and 5 alleles, for Hrd F. The existence of the blocks of hordein components controlled by loci Hrd A and Hrd B was demonstrated. Calculation of genetic distances allows us to conclude that the barley populations from Yemen and Ethiopia are more similar compared with the populations from Egypt. This confirms the hypothesis of Bakhteev on the origin of Ethiopian barleys.  相似文献   

17.
As observed in other self-incompatible species in the Pyrinae subtribe, loquat (Eriobotrya japonica) demonstrates gametophytic self-incompatibility that is controlled by the S-locus, which encodes a polymorphic stylar ribonuclease (S-RNase). This allows the female reproductive organ (style) to recognize and reject the pollen from individuals with the same S-alleles, but allows the pollen from individuals with different S-alleles to effect fertilization. The S-genotype is therefore an important consideration in breeding strategies and orchard management. In an attempt to optimize the selection of parental lines in loquat production, the S-RNase alleles of 35 loquat cultivars and their 26 progeny, as well as five wild loquat species, were identified and characterized in this study. The best pollinizer cultivar combinations were also explored. A total of 28 S-alleles were detected, 21 of which constituted novel S-RNase alleles. The S-haplotypes S2 and S6 were the most frequent, followed by S 29 , S 31 , S 5 , S 24 , S 28 , S 33 , S 34 , S 32 , and S 15 , while the rare alleles S 1 , S 9 , S 14 , S 16 , S 17 , S 18 , S 19 , S 20 , S 21 , S 22 , S 23 , S 27 , and S 35 were only observed in one of the accessions tested. Moreover, the S-genotypes of five wild loquat species (E. prinoides, E. bengalensis, E. prinoides var. dadunensis, E. deflexa, and E. japonica) are reported here for the first time. The results will not only facilitate the selection of suitable pollinators for optimal orchard management, but could also encourage the crossbreeding of wild loquat species to enhance the genetic diversity of loquat cultivars.  相似文献   

18.
Researches have reported that reactive oxygen species (ROS)-induced oxidative stress plays an important role in cell cryodamage during cryopreservation. In the current study, pollen from Magnolia denudata and Paeonia lactiflora ‘Zi Feng Chao Yang’ was cryopreserved and incubated with exogenous catalase (CAT) and malate dehydrogenase (MDH) immediately after thawing. The effect of CAT and MDH on the germination of cryopreserved pollen was measured. Based on that, the ROS level, lipid peroxidation and antioxidants activities in fresh pollen, cryopreserved pollen added with or without CAT or MDH were determined to investigate their relationship with oxidative stress. Pollen from Magnolia and Paeonia showed a significant loss of germination, but marked increase of ROS and malondialdehyde (MDA) production after cryostorage. Antioxidant profiles in them were also enhanced. CAT and MDH addition increased the post-LN pollen germination of Magnolia and Paeonia significantly. Their germination rate achieved the highest with 100 IU ml?1 MDH and 400 IU ml?1 CAT application, respectively. Compared to their untreated controls, ROS and MDA accumulation reduced significantly in cryopreserved Magnolia pollen treated with 100 IU ml?1 MDH, while superoxide dismutase (SOD) activity improved markedly. In the case of Paeonia, significantly lower level of ROS and MDA, but higher activity of CAT and SOD were observed in cryopreserved pollen treated with 400 IU ml?1 CAT. In conclusion, pollen deterioration after cryopreservation is associated with ROS-induced oxidative stress. Exogenous CAT and MDH can reduce the oxidative damage through the activity stimulation of antioxidant enzymes, and play a protective role in the pollen during cryopreservation.  相似文献   

19.
The composition and quantity of high-molecular-weight glutenin subunits plays an important role in determining the bread-making quality of wheat. Molecular-genetic analysis of allelic composition of high-molecular-weight glutenin genes in 102 bread wheat cultivars and lines from different geographical regions was conducted. Three alleles at the Glu-A1 locus, nine alleles at the Glu-B1 locus, and two alleles at the Glu-D1 locus were identified. Among the investigated cultivars and lines, 21 were characterized by intracultivar polymorphism. High allelic variation of high-molecular-weight glutenin subunit genes was shown for the collection: 21 and 9 combinations were defined in monomorphic and polymorphic cultivars and lines, respectively. However, the major part of the collection (66.7%) contained four allelic combinations: Glu-A1b Glu-B1c Glu-D1d, Glu-A1b Glu-B1c Glu-D1-2a, Glu-A1a Glu-B1c Glu-D1d, and Glu-A1b Glu-B1c Glu-D1d/Glu-D1-2a. Fourteen cultivars of bread wheat were selected, and they were characterized by a favorable allelic composition of Glu-1 loci.  相似文献   

20.
The genetic variation and relationships of the mangosteen (Garcinia mangostana L.) were observed across mangosteen populations in Java, Indonesia using newly identified microsatellite loci and morphological characters. In this study, we developed an improved protocol to isolate microsatellite loci, named Selective Repeats from AFLP Sequence, by using a hybridized membrane. Twenty microsatellite loci were evaluated using 78 individuals from five mangosteen populations, and we successfully amplified four closely related Garcinia species, including G. malaccensis, G. hombroniana, G. celebica, and G. porrecta. Eight loci were monomorphic and the others were polymorphic. Sixty-nine alleles were found, with 3.491 per locus on an average. Genetic diversity (H?) was calculated with an average across loci within population (H?S) as 0.39, an average loci across many populations (H?T) as 0.444, and genetic differentiation (F?ST) as 0.147. Furthermore, based on morphological characters, mangosteen individuals from four populations including Leuwiliang, Wanayasa, Puspahiang, and Kaligesing also had morphologically distinct fruit weight, rind weight, and rind thickness among populations. The study also elucidated the dispersal pattern of mangosteen in Java; the source of the genotype mangosteen in Java population was the Wanayasa population. In addition, we found evidence of tetraploidy in mangosteen. These results have potential applications in future breeding, conservation studies, and genetic assessment of mangosteen and their closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号