首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to examine the involvement of insulin in the activity of Na+/glucose cotransporter in rat small intestine, we compared Na(+)-dependent uptake of D-glucose by brush-border membrane vesicles prepared from control, streptozotocin-induced diabetic, insulin-treated diabetic and starved diabetic rats. In four groups, the uptake of D-glucose showed a transient overshoot in the presence of Na+ gradient between medium and vesicles (medium greater than vesicles). The overshoot magnitude was increased (1.8-fold of controls) in diabetic brush border membrane vesicles and recovered to the control level by the treatment of diabetic rats with insulin. In contrast, increased uptake of D-glucose in diabetic rats was not recovered by the starvation of diabetic rats although the blood glucose level was the same as that of controls. Furthermore, we attempted to examine phlorizin binding activities among four groups. Scatchard analysis indicated that phlorizin binding to diabetic brush border membrane vesicles was increased (1.6-fold of controls) without a change of the affinity for phlorizin as compared with controls. Increased binding of phlorizin to diabetic brush border membrane vesicles was also recovered to the control level by the treatment of diabetic rats with insulin, but not by starvation. These results suggested that the increased activity of Na+/glucose cotransporter in diabetic rats was due to the increase of the number of cotransporter and that intestinal cotransporter was physiologically controlled by insulin, but not by blood glucose levels.  相似文献   

2.
Previous studies have shown that two kinetically and genetically distinct Na+/glucose cotransporters exist in mammalian kidney. We have recently cloned and sequenced one of the rabbit renal Na+/glucose cotransporters (SGLT1) and have found that it is identical in sequence to the intestinal Na+/glucose cotransporter. Northern blots showed that SGLT1 mRNA was found predominantly in the outer medulla of rabbit kidney. Injection of mRNA from outer medulla and outer cortex into Xenopus oocytes resulted in equal expression of Na(+)-dependent sugar uptake, indicating that the outer cortex sample contained mRNA encoding both SGLT1 and a second Na+/glucose cotransporter. Western blots using antipeptide antibodies against SGLT1 showed that the SGLT1 protein is more abundant in outer medulla than outer cortex. However, brush border membrane vesicles prepared from outer cortex had a greater capacity for Na(+)-dependent glucose transport, indicating the presence of a second transporter in the vesicles from outer cortex. It appears that the cloned renal Na+/glucose cotransporter, SGLT1, is the 'high affinity, low capacity' transporter found predominantly in outer medulla. There is evidence that a second transporter, the 'low affinity, high capacity' transporter, is in outer cortex. Finally, the cDNA and protein sequences of the two renal Na+/glucose cotransporters are predicted to differ by more than 20%.  相似文献   

3.
We compared several features of Na(+)-dependent phosphono[14C]formic acid (PFA) binding and Na(+)-dependent phosphate transport in rat renal brush border membrane vesicles. From kinetic analyses, we estimated an apparent Km for PFA binding of 0.86 mM, an order of magnitude greater than that for phosphate and the high-affinity phosphate transport system. A hyperbolic Na(+)-saturation curve for PFA binding and a sigmoidal Na(+)-saturation curve for phosphate transport were demonstrated; based on these data, we estimated stoichiometries of 1:1 for Na+/PFA and 2:1 for Na+/phosphate. By radiation inactivation analysis, target sizes for brush border membrane protein(s) mediating Na(+)-dependent PFA binding and Na(+)-dependent phosphate transport corresponded to molecular masses of 555 +/- 32 kDa and 205 +/- 36 kDa, respectively. Similar analysis of the phosphate-inhibitable component of Na(+)-dependent PFA binding gave a target size of 130 +/- 28 kDa. We also demonstrated that phosphate deprivation, which elicits a 2.6-fold increase in brush border membrane Na(+)-dependent phosphate transport, had no effect on either Na(+)-dependent PFA binding or on the target size for PFA binding. However, phosphate deprivation appeared to increase the target size for phosphate transport (from 255 +/- 32 to 335 +/- 75 kDa (P less than 0.01]. In summary, we present evidence for several differences between Na(+)-dependent PFA binding and Na(+)-dependent phosphate transport in rat renal brush border membrane vesicles and suggest that PFA may not interact exclusively with the proteins mediating Na(+)-phosphate co-transport.  相似文献   

4.
Cells derived from the simian kidney, COS-7 cells, were transfected with a eucaryotic expression vector (pEUK-C1) containing the clone for the rabbit intestinal Na+/glucose cotransporter. Expression was monitored after transfection with lipofectin by measuring the initial rate of alpha-methylglucopyranoside (MeGlc) uptake. Cells transfected with vector containing the cDNA for the Na+/glucose cotransporter expressed Na(+)-dependent MeGlc transport. Neither control cells nor cells transfected with vector lacking cloned cDNA expressed the cotransporter. Na(+)-dependent MeGlc uptake into transfected cells was saturable (Km 150 microM), phlorizin-sensitive (Ki 11 microM), and inhibited by sugar analogs (D-glucose greater than MeGlc greater than D-galactose greater than 3-O-methyl-D-glucoside greater than D-allose much greater than L-glucose). Europium was able to mimic Na+ in driving MeGIC uptake. Finally, tunicamycin, an inhibitor of asparagine-linked glycosylation, inhibited the expression of Na(+)-dependent MeGlc transport 80%. We conclude that the rabbit intestinal Na+/glucose cotransporter expressed in COS-7 cell exhibits very similar kinetic properties to that in the native brush border and to that expressed in Xenopus oocytes. In addition, N-linked glycosylation appears to be important for functional expression of this membrane protein.  相似文献   

5.
B E Peerce 《Biochemistry》1991,30(17):4186-4192
The glucose derivative, 2,2,6,6-tetramethylpiperidine-1-oxylglucose (TEMPO-glucose) was synthesized and examined for its ability to substitute for glucose as a substrate for the intestinal brush border membrane Na+/glucose cotransporter. TEMPO-glucose inhibited Na(+)-dependent phlorizin binding with an apparent KI of 18 microM and Na(+)-dependent glucose uptake with an apparent KI of 70 microM. The transport competence of TEMPO-glucose was examined by using two measures of transport. The first involved comparing the reversal of trans Na+ inhibition by D-glucose and TEMPO-glucose. The second directly examined Na(+)-dependent TEMPO-glucose uptake by using TEMPO-glucose quenching of intravesicular fluorescein sulfonate fluorescence. Tryptophan fluorescence was sensitive to TEMPO-glucose in a Na(+)-dependent, glucose-inhibitable manner. The bulk of these tryptophans appeared to be located in hydrophobic environments based on Cs(+)-insensitivity. With the reconstituted cotransporter, TEMPO-glucose, and tryptophan quench reagents, the cotransporter was compared in three transport modes: zero trans uptake, zero trans uptake in the presence of a shunt of membrane potential, and substrate exchange. The results suggest that the cotransporter conformation varies depending on its mode of operation and that TEMPO-glucose may be a useful probe for localizing amino acid residues involved in glucose transport.  相似文献   

6.
Preparations of villus enterocytes and brush border membrane vesicles have been used to study the effects of streptozotocin-induced diabetes mellitus in rats on sugar transport across the brush border and basolateral membranes of ileal epithelial cells. In isolated cells, diabetes increased Na(+)-dependent galactose transport across the brush border of mid-villus but not upper villus cells. Galactose transport across the basolateral membrane was, however, enhanced by diabetes in both cell populations. Kinetic analysis of vesicle data suggested the presence of two transporters for Na(+)-dependent glucose transport. Diabetes induced a 5-fold increase in both KT and Vmax of the high-affinity/low-capacity system together with a 2-fold increase in the Vmax of the low-affinity/high-capacity transporter. Glucose was almost undetectable in the lumen of the upper and lower ileum in control animals but was present at high levels (26.1 +/- 4.3 mM and 6.5 +/- 1.3 mM) in diabetic rats. The possible significance of these changes in luminal sugar concentration in relation to the adaptation of transport across ileal enterocytes is discussed.  相似文献   

7.
L-Glutamine transport into porcine jejunal enterocyte brush border membrane vesicles was studied. Uptake was mediated by a Na(+)-dependent and a Na(+)-independent pathway as well as by diffusion. The initial rates of glutamine uptake over a range of concentrations is both Na(+)-gradient and Na(+)-free conditions were analyzed and kinetic parameters were obtained. Na(+)-dependent glutamine transport had a K(m) of 0.77 +/- 0.16 mM and a Jmax of 70.7 +/- 5.8 pmol mg protein-1 s-1; Na(+)-independent glutamine transport had a K(m) of 3.55 +/- 0.78 mM and a Jmax of 55.1 +/- 6.6 pmol mg protein-1 s-1. The non-saturable component measured with HgCl2-poisoned brush border membrane vesicles in the Na(+)-free condition contained passive diffusion and non-specific membrane binding and was defined to be apparent glutamine diffusion and the glutamine permeability coefficient (Kdiff) was estimated to be Kdiff = 3.78 +/- 0.06 pmol 1 mg protein-1 mmol-1 s-1. Results of inhibition experiments showed that Na(+)-dependent glutamine uptake occurred primarily through the brush border system-B degree transporters, whereas Na(+)-independent glutamine uptake occurred via the system-L transporters. Furthermore, the kinetics of L-leucine and L-cysteine inhibition of L-glutamine uptake demonstrated that neutral amino acids sharing the same brush border transporters can effectively inhibit each other in their transport.  相似文献   

8.
X-linked Hyp mice have a specific defect in Na(+)-dependent phosphate (Pi) transport at the renal brush border membrane (BBM). In the present study we examined the effect of the Hyp mutation on the molecular size of the Pi transporting unit and on Na(+)-dependent 14C-phosphonoformic (PFA) binding in renal BBM vesicles. By radiation inactivation analysis, we demonstrated that the molecular size of the Na(+)-Pi cotransporter is similar in normal (242 +/- 16 kDa) and Hyp mice (227 +/- 39 kDa). Moreover, while BBM Na(+)-dependent Pi transport is significantly reduced in Hyp mice (249 +/- 54 vs 465 +/- 82 pmol/mg protein/6s), genotype differences in (1) Na(+)-dependent PFA binding (1020 +/- 115 vs 1009 +/- 97 pmol/mg protein/30 min), (2) Pi-displaceable Na(+)-dependent PFA binding (605 +/- 82 vs 624 +/- 65 pmol/mg protein/6s), and (3) phosphate uptake at Na(+)-equilibrium (67 +/- 10 vs 54 +/- 7 pmol/mg protein/6s) are not apparent. The present data demonstrate that the molecular size of the renal BBM Na(+)-Pi cotransporter is normal in Hyp mice and suggest that the number of Na(+)-Pi cotransporters may not be reduced in the mutant strain.  相似文献   

9.
This paper describes a new method for solubilization and partial purification of a Na+-dependent phlorizin receptor from dog kidney proximal convoluted tubule. Selective solubilization is carried out with 0.1% Na+-deoxycholate followed by complete solubilization with 0.5% deoxycholate. The 100,000 X g supernatant of the deoxycholate extract is then subjected to a combination of chromatofocusing and gel exclusion chromatography. Purification is monitored by a new column assay which permits detection of the Na+-dependent high affinity phlorizin receptor in solubilized preparations. Na+-dependent phlorizin binding exhibits the same characteristics on the column assay as in intact brush border vesicles. Binding is temperature-dependent, inhibited by proteolytic agents, Na+-dependent, and inhibited by excess cold phlorizin and D-glucose but not L-glucose. Quantitation of specific binding at different stages of the isolation procedure indicates a final purification of approximately 80-140-fold compared to intact brush border membrane fragments. Enrichment of specific phlorizin binding is paralleled by enrichment of a 61-66-kDa polypeptide on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. It is postulated that this polypeptide contains both the Na and the sugar specific binding site and represents a subunit of the intact Na+-dependent glucose transporter from dog kidney proximal tubule brush border membrane.  相似文献   

10.
Concentrative uptake of 32Pi induced by the dissipation of a Na+ gradient (overshoot) was demonstrated in brush border membrane vesicles obtained from isolated perfused canine kidneys. Na+-dependent 32Pi transport was decreased in brush border vesicles from isolated kidneys perfused with parathyroid hormone (PTH) for 2 h compared to uptake measured in vesicles from kidneys perfused without PTH. Cyclic AMP-dependent 32P phosphorylation of a 62,000 Mr protein band was demonstrable on autoradiograms of sodium dodecyl sulfate-polyacrylamide gels of membrane suspensions from kidneys perfused +/- PTH. Evidence that perfusion with PTH resulted in cAMP-dependent phosphorylation in isolated kidneys from parathyroidectomized dogs (decreased cAMP-dependent 32P phosphorylation of the 62,000-Mr band in brush border vesicles) was obtained after 2-h perfusion with PTH. Decreased 32P phosphorylation was not observed if membranes were allowed to dephosphorylate prior to 32P phosphorylation in vitro. We conclude that brush border vesicles from isolated perfused canine kidneys can be used to study the action of PTH on Na+-Pi cotransport in brush border membranes and on cAMP-dependent phosphorylation of the membrane. It is strongly suggested that PTH effects changes in Na+-dependent 32Pi transport in isolated brush border vesicles and changes in 32P phosphorylation of vesicles via a direct action on the renal cortical cell rather than as a consequence of extrarenal actions of the hormone.  相似文献   

11.
In an attempt to identify the renal Na+/Pi cotransporter, Xenopus laevis oocytes were used to express mRNA isolated from the renal cortex of rat kidney. Na(+)-dependent uptake of Pi in oocytes, injected with mRNA, resulted in an increase of 2-4-fold as compared to oocytes injected with water. Both the new expressed and endogenous Na(+)-dependent Pi uptake activity were inhibited with 2 mM phosphonoformic acid (PFA). Expression of Pi uptake into oocytes was dose-dependent with the amount of mRNA injected. When mRNA was fractionated on a sucrose gradient, a mRNA fraction of 2.5 kilobases expressed the Na+/Pi cotransport activity in oocytes. This fraction resulted in a 6-fold stimulation of Na(+)-dependent Pi transport when compared to oocytes injected with water. The Km and Vmax for Na(+)-dependent Pi uptake were 0.18 mM and 118 pmol/oocyte per 30 min, respectively.  相似文献   

12.
We have previously shown that Na(+)-H(+) exchanger isoform NHE3 exists as both 9.6 and 21 S (megalin-associated) oligomers in the renal brush border. To characterize the oligomeric forms of the renal brush border Na(+)-H(+) exchanger in more detail, we performed membrane fractionation studies. We found that similar amounts of NHE3 were present in microvilli and a nonmicrovillar membrane domain of high density (dense vesicles). Horseradish peroxidase-labeled endosomes were not prevalent in the dense membrane fraction. However, megalin, which localizes primarily to the intermicrovillar microdomain of the brush border, was enriched in the dense vesicles, implicating this microdomain as the likely source of these membranes. Immunolocalization of NHE3 confirmed that a major fraction of the transporter colocalized with megalin in the intermicrovillar region of the brush border. Immunoprecipitation studies demonstrated that in microvilli the majority of NHE3 was not bound to megalin, while in the dense vesicles most of the NHE3 coprecipitated with megalin. Moreover, sucrose velocity gradient centrifugation experiments revealed that most NHE3 in microvilli sedimented with an S value of 9.6, while the S value of NHE3 in dense vesicles was 21. Finally, we examined the functional state of NHE3 in both membrane fractions. As assayed by changes in acridine orange fluorescence, imposing an outwardly directed Na(+) gradient caused generation of an inside acid pH gradient in the microvilli, indicating Na(+)-H(+) exchange activity, but not in the dense vesicles. Taken together, these data demonstrate that renal brush border NHE3 exists in two oligomeric states: a 9.6 S active form present in microvilli and a 21 S, megalin-associated, inactive form in the intermicrovillar microdomain of the apical plasma membrane. Thus, regulation of renal brush border Na(+)-H(+) exchange activity may be mediated by shifting the distribution between these forms of NHE3.  相似文献   

13.
J S Wu  J E Lever 《Biochemistry》1987,26(19):5958-5962
A 75-kilodalton (kDa) protein was purified from solubilized renal brush border membranes by using high-pressure liquid chromatography (HPLC) and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Functional and immunological properties identified the 75-kDa protein as a component of the Na+/glucose symport system. The purified protein was specifically recognized by a monoclonal antibody that functionally interacts with the Na+/glucose symporter. Na+-dependent phlorizin binding activity was associated with fractions containing the 75-kDa protein during HPLC fractionation on the anion exchanger Mono-Q and was greatly increased after reconstitution into egg yolk phosphatidylcholine vesicles. The final purified preparation contained glucosamine and a blocked N-terminus.  相似文献   

14.
The initial rates of Na(+)-dependent D-aspartate and D-glucose uptakes were shown to decline from the time of resuspension of brush border membrane vesicles isolated from rabbit and rat jejunum by standard divalent cation precipitation procedures. The former were however more stable than the latter and followed quite closely the decrease in the intravesicular volume, thus suggesting that the loss of transport activity may involve both nonspecific opening of the vesicles and either direct or indirect specific inactivation of the transporters. Uptake rates for both substrates did tend to stabilize at 6-24 h from resuspension, however this final 'next day' uptake activity was too low to be of practical use in kinetic studies. Freezing aliquots of rabbit jejunal vesicles in liquid N2 until the time of assay resulted in complete stabilization of D-glucose uptake. A modified homogenate buffer designed to inhibit a broad spectrum of phospholipase activities resulted in a partial stabilization of glucose transport by rabbit jejunal vesicles with, on average, an over 6-fold enrichment in the 'next day' stable specific activity of uptake as compared to unfrozen vesicles. The modified homogenate buffer also improved the stability and the 'next day' specific activities of D-glucose uptake in rat jejunal brush border vesicles and D-aspartic acid uptake in rabbit jejunal vesicles. It also completely stabilized the intravesicular volume in the latter preparation. An evaluation of the kinetic parameters of Na(+)-dependent D-glucose transport in rabbit vesicles prepared from either the standard homogenate media and frozen in liquid N2 or the modified media and allowed to stabilize overnight, revealed a single transport system with a Km of 0.31-0.32 mM as the best model to fit the data. As such the modifications to the homogenate media do not appear to effect the functional properties of D-glucose transport in the membrane. While being less efficient in stabilizing the vesicles than the rapid freezing protocol, it is shown that the modified homogenate should however be preferred when dealing with slowly permeant ions like choline since it provides in this case the only alternative to reliable measurement of uptake rates across a stable and equilibrated vesicle preparation.  相似文献   

15.
There is an overlap of carrier-mediated L-amino acid transport and apparent simple diffusion when measured in intestinal brush border membrane vesicles. Using L-threonine and L-glutamine as representative amino acids, this study was undertaken to estimate apparent simple diffusion of L-amino acids and to establish the effective dosage of HgCl2 for completely blocking carrier-mediated L-amino acid transport in porcine jejunal enterocyte brush border membrane vesicles. Jejunal mucosa was scraped from three pigs weighing 26 kg. Enterocyte brush border membrane vesicles, with an average enrichment of 24-fold in sucrase specific activity, were prepared by Mg2+-precipitation and differential centrifugation. In vitro uptake was measured by the fast filtration manual procedure. HgCl2 blocked the carrier-mediated initial transport of L-threonine and L-glutamine under Na+-gradient condition in a dose-dependent manner. At the minimal concentration of 0.165 micromol HgCl2 mg(-1) protein, carrier-mediated L-threonine and L-glutamine transport was completely inhibited. The apparent L-threonine and L-glutamine diffusion was estimated to be 8.6+/-0.7 and 12.4+/-1.0% of the total uptake at the substrate concentrations of 5 microM (L-threonine) and 50 microM (L-glutamine). Therefore, the treatment of porcine brush border membrane vesicles with a minimum of 0.165 micromol HgCl2 mg(-1) protein completely blocks carrier-mediated L-amino acid transport and enables the direct estimation of apparent L-amino acid diffusion in enterocyte brush border membrane vesicles.  相似文献   

16.
Oxidation of biological membranes has been suggested as a major pathological process in a variety of disease states including intestinal ischemia and inflammatory bowel disease. Previous studies on the small intestinal brush border membrane have shown that part of the decrease in the activity of the Na(+)-dependent glucose transporter (SGLT1) observed after oxidation could be secondary to the derangement in membrane fluidity that accompanied oxidative damage. The present study examined the relationship between oxidative-induced hemileaflet fluidity alterations and the resultant change in Na(+)-dependent glucose transport activity. To address this issue, in vitro oxidation of guinea pig brush border membrane vesicles was induced by incubation of the vesicles with ferrous sulfate and ascorbate. We found that oxidation decreased the fluidity of both the outer and inner hemileaflets, the decrease being greater in the outer leaflet. Moreover, the preferential alteration in hemileaflet fluidity was accompanied by a decrease in glucose transport. However, when membrane perturbing agents such as hexanol and A(2)C were used to restore membrane fluidity to levels comparable to controls, rates of glucose transport could not be interpreted in terms of variation of bulk membrane fluidity or variation in fluidity of any specific membrane leaflet. On the basis of these experiments, we propose that previous studies that reported coincidental alteration in membrane fluidity and glucose transport cannot be interpreted on the basis of bulk fluidity or hemileaflet fluidity.  相似文献   

17.
We have used baculovirus (AcNPV) to express the Na+/glucose cotransporter protein in cultured Sf9 cells. We constructed a baculovirus transfer vector containing the cDNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) under the control of the polyhedrin gene promoter. Recombinant baculovirus was obtained by cotransfection of SF9 cells with wild-type AcNPV DNA and the transfer vector. Recombinant virus was identified by Southern blotting and then purified. Recombinant infected Sf9 cells expressed a protein which was recognized by anti-peptide antibodies raised to sequences of the cloned Na+/glucose cotransporter. This protein migrated with a molecular mass of 55 kD by SDS-PAGE, similar to the in vitro translation product of SGLT1. An identical protein was metabolically labeled with [35S]methionine. Cells which synthesized the transport protein showed Na(+)-dependent alpha MeGlc transport. Micromolar phlorizin inhibited transport. Uninfected and wild-type virus infected Sf9 cells did not have Na(+)-dependent glucose transport. All transport protein migrated at 45% sucrose (w/w) by density gradient sedimentation, suggesting that the expressed transporter is membrane associated. We conclude that we have functionally expressed the rabbit intestinal Na+/glucose cotransporter in Sf9 cells. The transporter is not heavily glycosylated, and this is consistent with previous work showing that glycosylation is not necessary for function. We are poised to purify and characterize this protein from a structure-function perspective.  相似文献   

18.
J S Wu  J E Lever 《Biochemistry》1987,26(18):5783-5790
Phlorizin is a specific, high-affinity ligand that binds the active site of the Na+/glucose symporter by a Na+-dependent mechanism but is not itself transported across the membrane. We have isolated a panel of monoclonal antibodies that influence high-affinity, Na+-dependent phlorizin binding to pig renal brush border membranes. Antibodies were derived after immunization of mice either with highly purified renal brush border membranes or with apical membranes purified from LLC-PK1, a cell line of pig renal proximal tubule origin. Antibody 11A3D6, an IgG2b, reproducibly stimulated Na+-dependent phlorizin binding whereas antibody 18H10B12, an IgM, strongly inhibited specific binding. These effects were maximal after 30-min incubation and exhibited saturation at increased antibody concentrations. Antibodies did not affect Na+-dependent sugar uptake in vesicles but significantly prevented transport inhibition by bound phlorizin. Antibodies recognized a 75-kDa antigen identified by Western blot analysis of brush border membranes, and a 75-kDa membrane protein could be immunoprecipitated by 18H10B12. These properties, taken together with results in the following paper [Wu, J.-S.R., & Lever, J.E. (1987) Biochemistry (following paper in this issue)], provide compelling evidence that the 75-kDa antigen recognized by these antibodies is a component of the renal Na+/glucose symporter.  相似文献   

19.
The properties of hypoxanthine transport were investigated in purified brush border membrane vesicles isolated from calf proximal and distal jejunum. Hypoxanthine uptake in the vesicles was stimulated by a transmembrane Na(+) gradient and an inside negative potential resulting in a transient accumulation of intravesicular hypoxanthine, especially in the proximal jejunum. Na(+)-dependent hypoxanthine uptake at this site seemed to occur by two saturable transport systems, a high affinity (K(m)=0.33 micromol/l) and a low affinity (K(m)=165 micromol/l) transporter. Guanine, hypoxanthine, thymine and uracil inhibited intravesicular hypoxanthine uptake, whereas adenine and the nucleosides inosine and thymidine were without effect. These findings represent the first demonstration of active Na(+) gradient-dependent nucleobase transport in intestinal brush border membrane vesicles.  相似文献   

20.
To understand the mechanisms underlying ischemia-reperfusion-induced renal proximal tubule damage, we analyzed the expression of the Na+-dependent phosphate (Na+/Pi) cotransporter NaPi-2 in brush border membranes (BBM) isolated from rats which had been subjected to 30 min renal ischemia and 60 min reperfusion. Na+/Pi cotransport activities of the BBM vesicles were also determined. Ischemia caused a significant decrease (about 40%, P < 0.05) in all forms of NaPi-2 in the BBM, despite a significant increase (31+/-3%, P < 0.05) in the Na+/Pi cotransport activity. After reperfusion, both NaPi-2 expression and Na+/Pi cotransport activity returned to control levels. In contrast with Na+/Pi cotransport, ischemia significantly decreased Na+-dependent glucose cotransport but did not affect Na+-dependent proline cotransport. Reperfusion caused further decreases in both Na+/glucose (by 60%) and Na+/proline (by 33%) cotransport. Levels of NaPi-2 were more reduced in the BBM than in cortex homogenates, suggesting a relocalization of NaPi-2 as a result of ischemia. After reperfusion, NaPi-2 levels returned to control values in both BBM and homogenates. These data indicate that the NaPi-2 protein and BBM Na+/Pi cotransport activity respond uniquely to reversible renal ischemia and reperfusion, and thus may play an important role in maintaining and restoring the structure and function of the proximal tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号