首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
Peptide-mediated interactions play very important roles in cellular processes. Recent years have seen much activity in the discovery of new bioactive peptides, and interactions mediated by protein-peptide binding events. At the same time, computational approaches continue to be developed that allow protein-peptide interactions to be discovered with great accuracy. There are also a growing number of chemicals that can target these interactions with various applications in disease. Both new discoveries and predictions suggest that these protein-peptide interactions play greater roles in cellular processes than previously thought. We propose that projects to uncover the protein-peptide repertoire used in Nature in a systematic way will have numerous applications in molecular biology and medicine.  相似文献   

3.
The receptor function of galactosyltransferase during cellular interactions   总被引:1,自引:0,他引:1  
Summary The molecular mechanisms that underly cellular interactions during development are still poorly understood. There is reason to believe that complex glycoconjugates participate in cellular interactions by binding to specific cell surface receptors. One class of carbohydrate binding proteins that could serve as receptors during cellular interactions are the glycosyltransferases. Glycosyltransferases have been detected on a variety of cell surfaces, and evidence suggests that they may participate during cellular interactions by binding their specific carbohydrate substrates on adjacent cells or in extracellular matrix (see Refs. 1–4 for review).This review will focus on the receptor function of galactosyltransferase, in particular, during fertilization, embryonic cell adhesion and migration, limb bud morphogenesis, immune recognition and growth control. In many of these systems, the galactosyltransferase substrate has been characterized as a novel, large molecular weight glycoconjugate composed of repeating N-acetyllactosamine residues. The function of surface galactosyl-transferase during cellular interactions has been examined with genetic and biochemical probes, including the T/t-complex morphogenetic mutants, enzyme inhibitors, enzyme modifiers, and competitive substrates. Collectively, these studies suggest that in the mouse, surface galactosyltransferase is under the genetic control of the T/t-complex, and participates in multiple cellular interactions during development by binding to its specific lactosaminoglycan substrate.  相似文献   

4.
Cellular targets for transformation by the adenovirus E1A proteins   总被引:164,自引:0,他引:164  
P Whyte  N M Williamson  E Harlow 《Cell》1989,56(1):67-75
Three cellular proteins, including species of 300,000 daltons and 107,000 daltons as well as p105-RB, the product of the retinoblastoma susceptibility gene, stably interact with the adenovirus E1A proteins. To help determine the functional basis of these interactions, the regions of E1A that participate in these interactions were mapped using a series of deletion mutants. The 300,000 dalton and the 107,000 dalton proteins interacted with sequences within amino acids 1 to 76 and 121 to 127, respectively. Interaction with the third cellular protein, p105-RB, required the presence of sequences from two noncontiguous regions of the E1A polypeptide chain, amino acids 30 to 60 and 121 to 127. The regions of E1A that are required for these interactions coincided precisely with the regions of E1A that are required for its transforming function. These results suggest that the interactions with these cellular proteins are fundamental to the transforming activity of E1A.  相似文献   

5.
6.
Synthetic cell biology   总被引:5,自引:0,他引:5  
Synthesis of data into formal models of cellular function is rapidly becoming a necessary industry. The complexity of the interactions among cellular constituents and the quantity of data about these interactions hinders the ability to predict how cells will respond to perturbation and how they can be engineered for industrial or medical purposes. Models provide a systematic framework to describe and analyze these complex systems. In the past few years, models have begun to have an impact on mainstream biology by creating deeper insight into the design rules of cellular signal processing, providing a basis for rational engineering of cells, and for resolving debates about the root causes of certain cellular behaviors. This review covers some of the recent work and challenges in developing these "synthetic cell" models and their growing practical applications.  相似文献   

7.
Pawson T 《Cell》2004,116(2):191-203
Over the last two decades, a new and unifying concept of cellular organization has emerged in which modular protein-protein interactions provide an underlying framework through which signaling pathways are assembled and controlled. In this scheme, posttranslational modifications such as phosphorylation commonly exert their biological effects by regulating molecular interactions, exemplified by the ability of phosphotyrosine sites to bind selectively to SH2 domains. Although these interactions are rather simple in isolation, they can nonetheless be exploited to generate complex cellular systems. Here, I discuss experiments that have led to this view of dynamic cellular behavior and identify some current and future areas of interest in cell signaling.  相似文献   

8.
9.
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.  相似文献   

10.
Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.  相似文献   

11.
We examined the ligand protein interactions of two highly homologous cellular retinol binding proteins, CRBP and CRBP-II, and two highly homologous cellular retinoic acid binding proteins, CRABP-I and CRABP-II. While the crystal structures of all four have been determined, nuclear magnetic resonance studies provide a means for observing dynamic aspects of ligand protein interactions of these proteins in solution. The cellular functions of these proteins are less well understood. We have modeled retinoid flux between cytoplasmic retinoid proteins and model membranes and with nuclear receptors. Based on our in vitro studies, we propose that certain retinoids may indirectly influence retinoid signaling by displacing endogenous retinoids from the cytoplasmic proteins to the nuclear receptors.  相似文献   

12.
Matrix metalloproteinases and cellular motility in development and disease   总被引:1,自引:0,他引:1  
The movement of cells and the accompanied remodeling of the extracellular matrix is a critical step in many developmental processes. The matrix metalloproteinases (MMPs) are well recognized as mediators of matrix degradation, and their activity as regulators of signaling pathways by virtue of the cleavage of nonmatrix substrates has been increasingly appreciated. In this review, we focus on the role of MMPs in altering processes that influence cellular motility. MMP involvement in cellular adhesion, lamellipodia-directed movement, invadopodial protrusion, axonal growth cone extension, and chemotaxis are discussed. Although not designed to be comprehensive, these examples clearly demonstrate that cellular regulation of the MMPs influences cell motility in a variety of ways, including regulating cell-cell interactions, cell-matrix interactions, matrix degradation, and the release of bioactive signaling molecules. Deregulation of these interactions can ultimately result in disorders including inflammatory diseases, vascular diseases, bone diseases, neurological disorders, and cancer.  相似文献   

13.
Lipid droplets (LDs) are key cellular organelles involved in lipid storage and mobilisation. While the major signalling cascades and many of the regulators of lipolysis have been identified, the cellular interactions involved in lipid mobilisation and release remain largely undefined. In non-adipocytes, LDs are small, mobile and interact with other cellular compartments. In contrast, adipocytes primarily contain very large, immotile LDs. The striking morphological differences between LDs in adipocytes and non-adipocytes suggest that key differences must exist in the manner in which LDs in different cell types interact with other organelles. Recent studies have highlighted the complexity of LD interactions, which can be both homotypic, with each other, and heterotypic, with other organelles. The molecules involved in these interactions are also now emerging, including Rab proteins, key regulators of membrane traffic, and caveolin, an integral membrane protein providing a functional link between the cell surface and LDs. Here we summarise recent insights into the cell biology of the LD particularly focussing on the homotypic and heterotypic interactions in both adipocytes and non-adipocytes. We speculate that these interactions may involve inter-organelle membrane contact sites or a hemi-fusion type mechanism to facilitate lipid transfer.  相似文献   

14.
15.
Macromolecular interactions (i.e. protein-protein or DNA/RNA-protein interactions) play important cellular roles, including cellular communication and programmed cell death. Small-molecule chemical probes are crucial for dissecting these highly organized interactions, for mapping their function at the molecular level and developing new therapeutics. The lack of ideal chemical probes required to understand macromolecular interactions is the missing link in the next step of dissecting such interactions. Unfortunately, the classical combinatorial-chemistry community has not successfully provided the required probes (i.e. natural product inspired chemical probes that are rich in stereochemical and three-dimensional structural diversity) to achieve these goals. The emerging area of diversity-oriented synthesis (DOS) is beginning to provide natural product-like chemical probes that may be useful in this arena.  相似文献   

16.
17.
蛋白质-蛋白质相互作用及其抑制剂研究进展   总被引:1,自引:0,他引:1  
赵亚雪  唐赟 《生命科学》2007,19(5):506-511
蛋白质-蛋白质相互作用在细胞活动和生命过程中扮演着非常重要的角色。基因调节、免疫应答、信号转导、细胞组装等等都离不开蛋白质-蛋白质的相互作用。近几年,靶向蛋白质-蛋白质相互作用及其抑制剂研究也逐渐成为研究的热点;但是蛋白质复合物相互作用界面的一些特点和性质,如相互作用界面较大、结合界面较为平坦等,使蛋白质-蛋白质相互作用及其抑制剂研究充满了挑战。本文主要总结了蛋白质-蛋白质相互作用界面的一些性质和特点,分析了界面特性与其抑制剂设计的关系,并讨论了蛋白质-蛋白质相互作用的理论预测方法及其抑制剂的类型和特点,最后又通过实例说明了如何进行蛋白质-蛋白质相互作用抑制剂的设计。  相似文献   

18.
The circadian clock is an endogenous timing system based on the self-sustained oscillation in individual cells. These cellular circadian clocks compose a multicellular circadian system working at respective levels of tissue, organ, plant body. However, how numerous cellular clocks are coordinated within a plant has been unclear. There was little information about behavior of circadian clocks at a single-cell level due to the difficulties in monitoring circadian rhythms of individual cells in an intact plant. We developed a single-cell bioluminescence imaging system using duckweed as the plant material and succeeded in observing behavior of cellular clocks in intact plants for over a week. This imaging technique quantitatively revealed heterogeneous and independent manners of cellular clock behaviors. Furthermore, these quantitative analyses uncovered the local synchronization of cellular circadian rhythms that implied phase-attractive interactions between cellular clocks. The cell-to-cell interaction looked to be too weak to coordinate cellular clocks against their heterogeneity under constant conditions. On the other hand, under light–dark conditions, the heterogeneity of cellular clocks seemed to be corrected by cell-to-cell interactions so that cellular clocks showed a clear spatial pattern of phases at a whole plant level. Thus, it was suggested that the interactions between cellular clocks was an adaptive trait working under day–night cycles to coordinate cellular clocks in a plant body. These findings provide a novel perspective for understanding spatio-temporal architectures in the plant circadian system.  相似文献   

19.
Host microbe interactions frequently involve specific cellular tropism. Accurate characterization of cells involved in these initial interactions is complicated by the response to the microbe. We describe a method utilizing RNAlater for Fluorescence Activated Cell Sorting of these critical cells that minimizes the downstream perturbation in the gene expression profile.  相似文献   

20.
Erol A 《Cellular signalling》2011,23(7):1076-1081
In response to various types of stress, cells can undergo significant phenotypic changes, ranging from an increased DNA repair to senescence and apoptosis. The mechanisms by which p53 manages the choice between three possible cell fates in response to damaging stress remain poorly understood. p53 is not a simple switch that determines cell fate single-handedly; but rather as a component, albeit an important one, of an intricate signal network and molecular interactions. Thus, in addition to p53, fine-tuned interactions between growth- and division-activator molecules such as TGFβ, cMyc and FOXO are important determinants of the cellular fate. The aim of the paper is to resolve the complex interactions between these molecules and to elicit clear and reasonable working mechanisms for these diverse cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号