首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of low concentrations (0.2--2.0 mM) of EGTA to rabbit skeletal muscle G-actin in the presence of ATP caused increase in viscosity. The effect is probably due to chelation of Ca2+. EGTA-polymerized actin was sedimented in the ultracentrifuge as a pellet which could be depolymerized in the presence of Ca2+ and then repolymerized. Electron microscopy indicated that formation of filamentous actin which appears to be somewhat more flexible than F-actin obtained by polymerization with KCl. The EGTA-polymerized actin was dissociated by DNAase I faster than KCl-polymerized actin. F-Actin can thus be stable also in very low ionic strength media if Ca2+ is removed whereas for G-actin to be the only form of the protein in such media, micromolar concentrations of Ca2+ must be present.  相似文献   

2.
The binding of 45Ca2+ to membrane material isolated from lobster walking leg nerves was studied using a rapid filtration technique. In solutions of high ionic strength (450 mM), the amount of 45Ca2+ bound to this membrane material was found to be highly dependent on the monovalent cation used in the incubating solution. The amount of 45Ca2+ bound was larger when the membranes were incubated in a KCl solution compared to when they were incubated in a NaCl solution. This difference was attributed to the ability of these closed membrane vesicles to accumulate Ca2+ into the vesicle when incubating in a KCl solution but not in a NaCl solution. This accumulation of Ca2+ was found to be independent of metabolic energy and depended primarily on the absence of Na+ from the incubation medium. At low ionic strength, the membranes formed open fragments and the amount of Ca2+ bound was no longer sensitive to the monovalent cation species in the incubation solution. The 45Ca2+ bound under these low ionic strength conditions was considered to be bound to anionic sites on the membranes.  相似文献   

3.
Streaming potentials arising across large-conductance Ca2+-activated K+ channels incorporated into planar lipid bilayers were measured. Ca2+-activated channels obtained either from skeletal muscle or from smooth muscle membranes were used. Streaming potentials were extracted from the current-voltage relationship for the open channel obtained in the presence of an osmotic gradient. The osmotic gradient was established by adding glucose to one side of the membrane. At 300 mM KCl, the average streaming potential was 0.72 mV/osmol per kg for t-tubule channels and 0.83 mV/osmol per kg for smooth muscle channels. Streaming potential values depend on KCl concentration, they decrease as KCl concentration increases, and the value obtained by extrapolation to zero KCl concentration is 0.85 mV/osmol per kg. Assuming that water and ions cannot pass each other, at least in a region of the channel, the streaming potential values obtained indicate that this region contains a minimum of two and a maximum of four water molecules. It is concluded that the channel has a narrow region with a length of 0.6-1.2 nm.  相似文献   

4.
Dinitrophenylated reconstituted or natural actomyosin effected changes in the Ca2+ sensitivity which were dependent upon the ionic strength of the reaction medium. Dinitrophenylation of reconstituted actomyosin in 0.6 M KCl led to the incorporation of 2-6 mol of the reagent per 5-10(5) g of protein and it possessed considerable Ca2+ sensitivity. Dinitrophenylated natural actomyosin under the same conditions lost most of its Ca2+ sensitivity when 1.3-5.4 mol of the dinitrophenyl group were bound. The myosin from these modified actomyosins did not lose Ca2+ sensitivity and the myosin was labeled only with 0.4-1.7 mol of the dinitrophenyl group. Dinitrophenylation of both kinds of actomyosin in 0.06 M KCl abolished the Ca2+ sensitivity; the myosin from the modified actomyosins also lost Ca2+ sensitivity. Myosin alone was more susceptible to a loss of Ca2+ sensitivity than myosin in actomyosin. Actin protected the ability of myosin to sense Ca2+ regulated actin in modified actomyosin at 0.6 M KCl but not at 0.06 M KCl. Actomyosin dinitrophenylated in the presence of ATP lost Ca2+ sensitivity. However, the myosin from this actomyosin possessed Ca2+ sensitivity. Thiolysis of the dinitrophenylated actomyosin by 2-mercaptoethanol at low ionic strength did not restore the Ca2+ sensitivity of this actomyosin or its myosin although there was a significant loss of the dinitrophenyl group.  相似文献   

5.
The effect of spermine (50-400 microM) on the Ca-transporting system of brain mitochondria was studied. In a medium containing Mg2+ and ATP, spermine facilitates the accumulation of Ca2+ by decreasing Km of the uniporter. Spermine inhibits Na-stimulated Ca2+ efflux; this effect is dependent on the ionic strength of the medium--it is decreased when KCl concentration is increased from 20 to 120 mM. Spermine (200 microM) decreases (by 50%) the steady state concentration of Ca2+ maintained by mitochondria. The importance of spermine as a regulator of Ca2+-transport in brain mitochondria is discussed.  相似文献   

6.
The influence of ionic strength on the isometric tension, stiffness, shortening velocity and ATPase activity of glycerol-treated rabbit psoas muscle fiber in the presence and the absence of Ca2+ has been studied. When the ionic strength of an activating solution (containing Mg2+-ATP and Ca2+) was decreased by varying the KCl concentration from 120 to 5 mM at 20 degrees C, the isometric tension and stiffness increased by 30% and 50%, respectively. The ATPase activity increased 3-fold, while the shortening velocity decreased to one-fourth. At 6 degrees C, similar results were obtained. These results suggest that at low ionic strengths ATP is hydrolyzed predominantly without dissociation of myosin cross-bridges from F-actin. In the absence of Ca2+, with decreasing KCl concentration the isometric tension and stiffness developed remarkably at 20 degrees C. However, the ATPase activity and shortening velocity were very low. At low ionic strength, even in the absence of Ca2+ myosin heads are bound to thin filaments. The development of the tension and stiffness were greatly reduced at 6 degrees C or at physiological ionic strength.  相似文献   

7.
Ca2+-binding of S-100 protein was studied using a Ca2+ electrode at pH 6.80. In the presence of 0.1 M KCl and 10 mM MgCl2 (ionic strength 0.13), Ca2+-binding to S-100 protein occurred in three steps with positive cooperativity. The numbers of bound Ca2+ ions in the three steps were 2, 2, and 4. The Ca2+-binding constants were 6.9 x 10(3) M-1, 2.9 x 10(3) M-1, and 3.7 x 10(2) M-1, respectively. The Ca2+-binding constants of the first and second steps obtained in the presence of 33.3 mM MgCl2 or 0.1 M KCl (ionic strength 0.10) were 1.4 times larger than those described above. This suggests that Mg2+ does not inhibit Ca2+-binding of S-100 protein. The increase of KCl concentration from 0.1 to 0.2 M caused a decrease of the Ca2+-binding constants to ca. 50%.  相似文献   

8.
Neuronal cell death as a result of apoptosis is associated with cerebrovascular stroke and various neurodegenerative disorders. Pharmacological agents that maintain normal intracellular Ca2+ levels and inhibit cellular oxidative stress may be effective in blocking abnormal neuronal apoptosis. In this study, a spontaneous (also referred to as age-induced) model of apoptosis consisting of rat cerebellar granule cells was used to evaluate the antiapoptotic activities of voltage-sensitive Ca2+ channel blockers and various antioxidants. The results of these experiments demonstrated that the charged, dihydropyridine Ca2+ channel blocker amlodipine had very potent neuroprotective activity in this system, compared with antioxidants and neutral Ca2+ channel blockers (nifedipine and nimodipine). Within its effective pharmacological range (10-100 nM), amlodipine attenuated intracellular neuronal Ca2+ increases elicited by KCl depolarization but did not affect Ca2+ changes triggered by N-methyl-D-aspartate receptor activation. Amlodipine also inhibited free radical-induced damage to lipid constituents of the membrane in a dose-dependent manner, independent of Ca2+ channel modulation. In parallel experiments, spontaneous neuronal apoptosis was inhibited in dose- and time-dependent manners by antioxidants (U-78439G, alpha-tocopherol, and melatonin), nitric oxide synthase inhibitors (N-nitro-L-arginine and N-nitro-D-arginine), and a nitric oxide chelator (hemoglobin) in the micromolar range. These results suggest that spontaneous neuronal apoptosis is associated with excessive Ca2+ influx, leading to further intracellular Ca2+ increases and the generation of reactive oxygen species. Agents such as amlodipine that block voltage-sensitive Ca2+ channels and inhibit cellular oxidative stress may be effective in the treatment of cerebrovascular stroke and neurodegenerative diseases associated with excessive apoptosis.  相似文献   

9.
In pancreatic islets of fetal rats the effect of glucose (3 and 16.7 mM), glyceraldehyde (10 mM), leucine (20 mM), b-BCH (20 mM), tolbutamide (100 micrograms/ml), glibenclamide (0.5 and 5.0 micrograms/ml) arginine (20 mM), KCl (20 mM) and theophylline (2.5 mM) on 45Ca2+ net uptake and secretion of insulin was studied. All compounds tested failed to stimulate 45Ca2+ net uptake. However, in contrast to glucose and glyceraldehyde, leucine, b-BCH, tolbutamide, glibenclamide, arginine, KCl and theophylline significantly stimulated release of insulin. This effect could not be inhibited by the calcium antagonist verapamil (20 microM). Elevation of the glucose concentration from 3 to 5.6 mM did not alter 86Rb+ efflux of fetal rat islets but inhibited 86Rb+ efflux of adult rat islets. Stimulation of 86Rb+ efflux with tolbutamide (100 micrograms/ml), leucine (20 mM) or b-BCH (20 mM) in the presence of 3 mM glucose was also ineffective in fetal rat islets. Our data suggest that stimulation of calcium uptake via the voltage dependent calcium channel is not possible in the fetal state. They also provide evidence that stimulators of insulin release which are thought not to act through their metabolism, initiate insulin secretion from fetal islets by a mechanism which is different from stimulation of calcium influx.  相似文献   

10.
Tang J  Zhang JH 《Life sciences》2000,68(4):475-481
Activity of reactive oxygen species is elevated in diabetes mellitus and has been implicated in the destruction of cellular components. The toxic effect of reactive oxygen species was investigated by testing the effect of H2O2 on [Ca2+]i in isolated islets of Langehans. H2O2 increased [Ca2+]i in a dose-dependent manner, which was irreversible at high concentrations. The maximum effect of H2O2 on [Ca2+]i was larger than those of KCl, glucose, ATP, carbachol and endothelin-1. The effect of H2O2 was only partially attenuated by removal of external Ca2+ and by the in-organic Ca2+ channel blocker nickel, but was not blocked by voltage-dependent or -independent Ca2+ channel blockers nimodipine, nicardipine, SK&F 96365, econazole and lanthanum. H2O2, disrupted [Ca2+]i homeostasis in islets by affecting both release and influx of Ca2+ and causing dysfunction of Ca2+ clearance systems and may contribute to the pathological process of diabetes.  相似文献   

11.
When olfactory receptor neurons are exposed to sustained application of odours, the elicited ionic current is transient. This adaptation-like effect appears to require the influx of Ca2+ through the odour-sensitive conductance; in the absence of extracellular Ca2+ the current remains sustained. Odour transduction proceeds through a G-protein-based second messenger system, resulting finally in the direct activation of an ion channel by cyclic AMP. This channel is one possible site for a negative feedback loop using Ca2+ as a messenger. In recordings of single cyclic AMP gated channels from olfactory receptor neurons, the open probability of the channel in saturating cAMP concentrations was dependent on the concentration of intracellular Ca2+. It could be reduced from 0.6 in 100 nm Ca2+ to 0.09 in 3 microM Ca2+. However, as neither the single channel conductance nor the mean open time were affected by Ca+ concentration, this does not appear to be a mechanism of simple channel block. Rather, these results suggest that intracellular Ca2+ acts allosterically to stabilize a closed state of the channel.  相似文献   

12.
The involvement of Na+ and Ca2+ channels in the stimulatory effect of nicotine and cAMP upon proenkephalin A mRNA (mRNA ENK) levels in primary cultures of bovine adrenal chromaffin cells was analyzed. Nicotine (10 microM) caused about a 2-3-fold increase in mRNA ENK which was abolished by the nicotinic receptor antagonist tubocurarine (4 X 10(-7) M), inhibited by the Ca2+ channel antagonist nifedipine (100 nM) abolished by the Ca2+ channel blocker D600 (10 microM), and augmented by the Ca2+ channel agonist BayK 8644 (100 nM). In contrast, blockade of the Na+ channel by tetrodotoxin (1 microM) did not modulate the nicotine-induced increase in mRNA ENK. Incubation of the cells with forskolin (25 microM) and 8-bromo-cAMP (1 mM) also resulted in an increase in mRNA ENK levels that was inhibited by the Ca2+ channel blocker verapamil (50 microM) and nifedipine (100 nM), whereas it was enhanced by BayK 8644 (100 nM). In addition, the effect of forskolin and 8-bromo-cAMP was decreased by the Na+ channel blocker tetrodotoxin (1 microM). These results suggest that the induction of proenkephalin A gene expression by cAMP and nicotine involves the modulation of ion channels. It appears that changes in Ca2+ flux are involved in mediating this induction. The dihydropyridines nifedipine and BayK 8644 and the Ca2+ channel blockers verapamil and D600 all modulate 45Ca uptake. In addition, we show that incubation of the cells with A23187 (10(-7) M), a Ca2+ ionophore, resulted in an increase in mRNA ENK, indicating that changes in intracellular Ca2+ levels may indeed modulate proenkephalin A gene expression. Although it appears that an elevation of mRNA ENK upon nicotinic receptor activation occurs rapidly (an increase could be detected after 2 h incubation), the findings that the rise in mRNA ENK could be abolished by the Ca2+ channel blocker D600 but not affected by tetrodotoxin (1 microM), and that agents such as KCl (20 mM) and veratridine (5 microM) that increase mRNA ENK by activation of voltage-dependent Ca2+ channels do not result in an increase in intracellular cAMP, provide no evidence for a major role of the adenylate cyclase system in the inducing effect of nicotine upon proenkephalin A gene expression.  相似文献   

13.
Calcium binding to calmodulin and its globular domains   总被引:15,自引:0,他引:15  
The macroscopic Ca(2+)-binding constants of bovine calmodulin have been determined from titrations with Ca2+ in the presence of the chromophoric chelator 5,5'-Br2BAPTA in 0, 10, 25, 50, 100, and 150 mM KCl. Identical experiments have also been performed for tryptic fragments comprising the N-terminal and C-terminal domains of calmodulin. These measurements indicate that the separated globular domains retain the Ca2+ binding properties that they have in the intact molecule. The Ca2+ affinity is 6-fold higher for the C-terminal domain than for the N-terminal domain. The salt effect on the free energy of binding two Ca2+ ions is 20 and 21 kJ. mol-1 for the N- and C-terminal domain, respectively, comparing 0 and 150 mM KCl. Positive cooperativity of Ca2+ binding is observed within each globular domain at all ionic strengths. No interaction is observed between the globular domains. In the N-terminal domain, the cooperativity amounts to 3 kJ.mol-1 at low ionic strength and greater than or equal to 10 kJ.mol-1 at 0.15 M KCl. For the C-terminal domain, the corresponding figures are 9 +/- 2 kJ.mol-1 and greater than or equal to 10 kJ.mol-1. Two-dimensional 1H NMR studies of the fragments show that potassium binding does not alter the protein conformation.  相似文献   

14.
The effects of divalent cations (Zn2+, Cd2+, Ca2+, Mg2+) on the cytosol androgen receptor were determined by sedimentation into sucrose gradients. At low ionic strength (25 mM KCl, 50 mM Tris, pH 7.4), Zn2+ (200 microM total, which calculates to 130 nM free Zn2+ in 10 mM mercaptoethanol) causes a shift in the sedimentation coefficient of the rat Dunning prostate tumor (R3327H) cytosol receptor and rat ventral prostate cytosol receptor from 7.5 +/- 0.3 S to 8.6 +/- 0.3 S. Zn2+ stabilizes the 8.6 S receptor form in salt concentrations up to 0.15 M KCl in 50 mM Tris, pH 7.2. In low ionic strength gradients containing Ca2+ (greater than or equal to 200 microM) or Mg2+ (greater than or equal to 1 mM), the receptor sediments as 4.7 +/- 0.3 S. The dissociating effects of Ca2+ and Mg2+ can be fully reversed by sedimentation into gradients containing Zn2+ (200 microM total) or Cd2+ (10 microM total). In the presence of Zn2+ (200 microM total), Ca2+ (10 microM to 3 mM) converts the receptor to an intermediate form with sedimentation coefficient 6.2 +/- 0.2 S, Stokes radius 73 A, and apparent Mr approximately 203,000. The potentiating effect of Zn2+ on formation of the 8.6 S receptor (in the absence of Ca2+) and the 6.2 S receptor (in the presence of Ca2+) requires both the 4.5 S receptor and the 8 S androgen receptor-promoting factor. Sodium molybdate stabilizes the untransformed cytosol receptor but, unlike Zn2+, does not promote reconstitution of the 8.6 S receptor from its partially purified components. These results indicate that divalent cations alter the molecular size of the androgen receptor in vitro and thus may have a role in altering the state of transformation of the receptor.  相似文献   

15.
We have studied the effects of membrane surface charge on Na+ ion permeation and Ca2+ block in single, batrachotoxin-activated Na channels from rat brain, incorporated into planar lipid bilayers. In phospholipid membranes with no net charge (phosphatidylethanolamine, PE), at low divalent cation concentrations (approximately 100 microM Mg2+), the single channel current-voltage relation was linear and the single channel conductance saturated with increasing [Na+] and ionic strength, reaching a maximum (gamma max) of 31.8 pS, with an apparent dissociation constant (K0.5) of 40.5 mM. The data could be approximated by a rectangular hyperbola. In negatively charged bilayers (70% phosphatidylserine, PS; 30% PE) slightly larger conductances were observed at each concentration, but the hyperbolic form of the conductance-concentration relation was retained (gamma max = 32.9 pS and K0.5 = 31.5 mM) without any preferential increase in conductance at lower ionic strengths. Symmetrical application of Ca2+ caused a voltage-dependent block of the single channel current, with the block being greater at negative potentials. For any given voltage and [Na+] this block was identical in neutral and negatively charged membranes. These observations suggest that both the conduction pathway and the site(s) of Ca2+ block of the rat brain Na channel protein are electrostatically isolated from the negatively charged headgroups on the membrane lipids.  相似文献   

16.
The binding of Ca2+ to calmodulin and its two tryptic fragments has been studied using microcalorimetry. The binding process is accompanied by the uptake or release of protons, depending on the ionic strength. With no added salt, the total enthalpy change for the binding of four calcium ions to calmodulin is -41 kJ mol-1 but in the presence of 0.15 mM KCl delta Htot is +17 kJ mol-1. The mode of binding of Ca2+ is also completely different with and without added salt. It is also shown that for the C-terminal fragment of calmodulin, TR2C, the drastic reduction in delta Gtot for the binding process on increasing the ionic strength is largely an enthalpic effect. Domain interactions in calmodulin are indicated by the fact that the sum of the enthalpies of calcium binding to the two tryptic fragments is not the same as the total binding enthalpy to calmodulin itself. The binding of Ca2+ to calmodulin has also been studied calorimetrically at different temperatures in the range 21-37 degrees C. delta Cp is large and negative in this interval.  相似文献   

17.
Environmental factors of physiological relevance such as pH, calcium, ionic strength, and temperature can affect the state of self-aggregation of surfactant protein A (SP-A). We have studied the secondary structure of different SP-A aggregates and analyzed their fluorescence characteristics. (a) We found that self-aggregation of SP-A can be Ca(2+)-dependent. The concentration of Ca(2+) needed for half-maximal self-association (K(a)(Ca)()2+) depended on the presence of salts. Thus, at low ionic strength, K(a)(Ca)()2+ was 2.3 mM, whereas at physiological ionic strength, K(a)(Ca)()2+ was 2.35 microM. Circular dichroism and fluorescence measurements of Ca(2+)-dependent SP-A aggregates indicated that those protein aggregates formed in the absence of NaCl are structurally different from those formed in its presence. (b) We found that self-aggregation of SP-A can be pH-dependent. Self-aggregation of SP-A induced by H(+) was highly influenced by the presence of salts, which reduced the extent of self-association of the protein. The presence of both salts and Ca(2+) attenuated even more the effects of acidic media on SP-A self-aggregation. (c) We found that self-aggregation of SP-A can be temperature-dependent. At 20 degrees C, SP-A underwent self-aggregation at physiological but not at low ionic strength, in the presence of EDTA. All of these aggregates were dissociated by either adding EDTA (a), increasing the pH to neutral pH (b), or increasing the temperature to 37 degrees C (c). Dissociation of Ca(2+)-induced protein aggregates at low ionic strength was accompanied by an irreversible loss of both SP-A secondary structure and SP-A-dependent lipid aggregation properties. On the other hand, temperature-dependent experiments indicated that a structurally intact collagen-like domain was required for either Ca(2+)- or Ca(2+)/Na(+)-induced SP-A self-aggregation but not for H(+)-induced protein aggregation.  相似文献   

18.
Cross-striation pattern and sarcomere length in isolated myofibrils (both glycerinated and fresh) as well as isometric tension of glycerinated fibers of rabbit m. psoas are unaffected by an evaluation in ionic strength of CaCl2 up to 0.2 in the absence of ATP. An addition of MgATP (1 to 3mM) to the Ca2+ media induces the changes which have been shown to be characteristic of overrelaxation [1, 2]: A band shortening occurs followed by a complete plastification of the fibres. A tentative mechanism of the process is discussed in terms of spontaneous rearrangement of calcium myosinate packing in thick filaments that follows disrupting of rigor crossbridges with thin filaments under the action of ATP. Released calcium myosinate heads fail to form "active" bridges with actin; thick filaments undergo a conformational change resulted in their shattening due to increase in the equilibrium region of LMM tail overlap. The effects do not depend on ionic strength only: on replacing CaCl2 by KCl at equal ionic strength 0.2, an addition of ATP induces normal contraction instead of overrelaxation. A possibility is discussed that in a living muscle overrelaxation could provide a siding to prevent damage in case of emergency.  相似文献   

19.
The effects of pH,Mg2+, and ionic strength on Ca2+ binding to rabbit skeletal troponin C were studied by using a Ca2+ sensitive electrode. Troponin C has two high affinity and two low affinity sites and the Ca2+ affinity of both sites was increased by increasing pH in a pH range from pH 5.6 to 10.4. The affinity was decreased by increasing ionic strength. The change of the Ca2+ affinity can be explained by the electrostatic interaction between Ca2+ and the protein. At alkaline pH, the four Ca2+ binding sites bind Ca2+ with the same affinity and the distinction between the high and the low affinity sites vanished. This result shows that the difference of the Ca2+ affinity is owing to differences of the secondary or the tertiary structure of the Ca2+ binding sites, not owing to a difference of the primary structures of the Ca2+ binding sites. The two high affinity sites bound two Ca2+ ions cooperatively in neutral pH. The cooperativity was diminished at both acidic and alkaline pH. Mg2+ ion decreased the affinity of the low affinity sites.  相似文献   

20.
Activation of Ca2+-dependent K+ conductance has long been postulated to contribute to the cyclical pauses in glucose-induced electrical activity of pancreatic islet B cells. Here we have examined the gating, permeation and blockade by cations of a large-conductance, Ca2+-activated K+ channel in these cells. This channel shares many features with BK (or maxi-K+) Ca2+-activated K+ channels in other cells. (1) Its 'permeability' selectivity sequence is PT1+: PK+: PRb+: PNH4+: PNa+, Li+, Cs+ = 1.3:1.0:0.5:0.17: less than 0.05. Permeant, as well as impermeant, cations reduce channel conductance. (2) Its conductance saturates at 325-350 pS with bath KCl greater than 400 mM (144 mM KCl pipette). (3) It shows asymmetric blockade by tetraethylammonium ion (TEA) and Na+. (4) It is sensitive to Ca2+i over the range 5 nM-100 microM; over the range 50-200 nM, channel activity varies as [Ca2+ free]1-2. (5) It is sensitive to internal pH over the range 6.85-7.35, but the decrease in channel activity seen with reduced pHi may be partially compensated by the increase in free Ca2+ concentration which occurs on acidification of buffered Ca2+/EGTA solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号