首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Isolated hepatocytes were incubated in the presence of [14C]palmitic, [14C]linoleic or [14C]linolenic acid and the time-courses of incorporation of radioactivity into phosphatidylcholine and phosphatidylethanolamine of microsomes and mitochondria were followed. For this purpose a procedure was developed for HPLC separation of 9-diazomethylanthracene (ADAM) derivatives of fatty acids. When [14C]palmitic acid was used, the major product of elongation and desaturation was octadecadienoic acid, which accounted for 35-65% of the total radioactivity. Labeled palmitoleic, stearic and oleic acids could also be isolated. In fatty acids which do not participate to any large extent in deacylation-reacylation reactions, the pattern of incorporation was characteristic: a high rate of incorporation into microsomal and a low rate of incorporation into mitochondrial phospholipids during the first 40 min, followed by a decrease in the former and an increase in mitochondrial labeling. This pattern is consistent with the fact that de novo synthesis of these two phospholipids occurs in the endoplasmic reticulum in vivo. When cells were incubated in the presence of [14C]linoleic acid, 70-90% of the radioactivity recovered in phospholipids was in this same form, whereas the remaining label was mainly in arachidonic acid and, to some extent, in eicosatrienoic acid. When hepatocytes were incubated in the presence of [14C]linolenic acid, 70-85% of the radioactivity in isolated phospholipids was associated with linolenic acid. As much as 20% of the label was recovered in docosahexanoic acid and 5-10% in arachidonic acid. In the case of the two latter labeled substrates the exchange reactions seem to dominate over de novo synthesis. For phospholipids synthesized de novo the transfer from the endoplasmic reticulum to mitochondria requires about 3 h.  相似文献   

2.
1. Phenobarbitone injection did not affect the concentration of phospholipids in the liver endoplasmic reticulum, but it increased the rate of incorporation of [(32)P]orthophosphate into the phospholipids. 20-Methylcholanthrene caused a transient increase in total phospholipid but a decrease in the turnover rate of the phospholipids. 2. Incorporation of [(32)P]orthophosphate into phosphatidylcholine, compared with that into phosphatidylethanolamine, was increased by phenobarbitone injection but decreased by 20-methylcholanthrene injection. 3. The activity of S-adenosylmethionine-phosphatidylethanolamine methyltransferase increased 12h after phenobarbitone injection, when incorporation of [(32)P]orthophosphate into phosphatidylcholine was a maximum, but at other times, and after 20-methylcholanthrene injection, the activity of the enzyme did not correlate with the rate of phosphatidylcholine synthesis. 4. [(14)C]Glycerol was incorporated more rapidly into phosphatidylcholine than into phosphatidylethanolamine, whereas [(32)P]orthophosphate and [(14)C]ethanolamine were incorporated more rapidly into phosphatidylethanolamine than into phosphatidylcholine. 5. Incorporation of [(32)P]orthophosphate into phosphatidylethanolamine of liver slices incubated in vitro was much more rapid than into phosphatidylcholine, and incorporation into phosphatidylcholine was markedly stimulated by addition of methionine to the medium. Changes in the incorporation of [(32)P]orthophosphate into phospholipids observed in vivo after injection of phenobarbitone or methylcholanthrene could not be reproduced in slices incubated in vitro. 6. It is concluded that phenobarbitone injection causes an increased rate of turnover of total phospholipids in the endoplasmic reticulum and an increased conversion of phosphatidylethanolamine into phosphatidylcholine, whereas 20-methylcholanthrene injection depresses both the turnover rate of total phospholipids and the formation of phosphatidylcholine.  相似文献   

3.
The deacylation and reacylation process of phospholipids is the major pathway of turnover and repair in erythrocyte membranes. In this paper, we have investigated the role of carnitine palmitoyltransferase in erythrocyte membrane phospholipid fatty acid turnover. The role of acyl-L-carnitine as a reservoir of activated acyl groups, the buffer function of carnitine, and the importance of the acyl-CoA/free CoA ratio in the reacylation process of erythrocyte membrane phospholipids have also been addressed. In intact erythrocytes, the incorporation of [1-14C]palmitic acid into acyl-L-carnitine, phosphatidylcholine, and phosphatidylethanolamine was linear with time for at least 3 h. The greatest proportion of the radioactivity was found in acyl-L-carnitine. Competition experiments using [1-14C]palmitic and [9,10-3H]oleic acid demonstrated that [9,10-3H]oleic acid was incorporated preferentially into the phospholipids and less into acyl-L-carnitine. When an erythrocyte suspension was incubated with [1-14C]palmitoyl-L-carnitine, radiolabeled palmitate was recovered in the phospholipid fraction, and the carnitine palmitoyltransferase inhibitor, 2-tetradecylglycidic acid, completely abolished the incorporation. ATP depletion decreased incorporation of [1-14C]palmitic and/or [9,10-3H]oleic acid into acyl-L-carnitine, but the incorporation into phosphatidylcholine and phosphatidylethanolamine was unaffected. In contrast, ATP depletion enhanced the incorporation into phosphatidylcholine and phosphatidylethanolamine of the radiolabeled fatty acid from [1-14C]palmitoyl-L-carnitine. These data are suggestive of the existence of an acyl-L-carnitine pool, in equilibrium with the acyl-CoA pool, which serves as a reservoir of activated acyl groups. The carnitine palmitoyltransferase inhibition by 2-tetradecylglycidic acid or palmitoyl-D-carnitine caused a significant reduction of radiolabeled fatty acid incorporation into membrane phospholipids, only when intact erythrocytes were incubated with [9,10-3H]oleic acid. These latter data may be explained by the differences in rates and substrates specificities between acyl-CoA synthetase and the reacylating enzymes for palmitate and oleate, which support the importance of carnitine palmitoyltransferase in modulating the optimal acyl-CoA/free CoA ratio for the physiological expression of the membrane phospholipids fatty acid turnover.  相似文献   

4.
Abstract: Labeled palmitic acid ([16-14C]palmitate) (0).5 μCi) was injected into rat sciatic nerves in vivo to characterize thc incorporation of this fatty acid into complex peripheral nerve lipids after time lapses of 1 min to 2 weeks. For the first 30 min after intraneural injection, the label was concentrated in nerve diglycerides. Thereafter, the relative diglyccride label declined rapidly, and phospholipid radioactivity rose steadily. After 120 min, phospholipids contained over 70% of the total lipid radioactivity. Among the phospholipids, phosphatidylcholine had the largest percentage of total phospholipid label, and acylation of lysophosphatidylcholine accounted for approximately 75% of this label. With time, there was conversion of [16-14C]palmitate to other long-chain fatty acids by elongation and desaturation. Phosphatidic acid was labeled also, suggesting the operation of the de novo biosynthetic mechanism. However, the specific radioactivity of 1,2-diacylglycerol was much higher than that of phosphatidic acid, suggesting phosphorylation of diglycerides by diglyceride kinase. After nerve section and survival of 2 h to 50 days, the injection of [16-14C]palmitate into the degenerating distal segment revealed an overall decline of phospholipid labeling and a commensurate increase of triglyceride radioactivity. Phosphatidylcholine in degenerating nerve contained a larger percentage of the fatty acid label than that in normal nerve. Almost all of the labeling was due to acylation of lysophosphatidylcholine, implying a much smaller contribution of the de novo pathway. Phosphatidylethanolamine and phosphatidylserine showed a relative loss of radioactivity. The changes were apparent at 1 day, but not at 2 h, suggesting loss of homeostatic control, presumably by interruption of axonal flow. An incidental observation was the stimulation of phosphatidylcholine biosynthesis by acylation of lysophosphatidylcholine in the contralateral unoperated sciatic nerve.  相似文献   

5.
The kinetics of labeling of lung phosphatidylcholine and disaturated phosphatidylcholine were studied for periods from 0.75--120 min following intravenous injection of radiolabeled palmitic acid and choline into 3-day-old rabbits. The labeled palmitic acid was cleared rapidly from plasma, and rapidly appeared with identical incorporation kinetics in both phosphatidylcholine and disaturated phosphatidylcholine. The 2-acyl positions of both phosphatidylcholine and disaturated phosphatidylcholine were labeled preferentially soon after [14C]palmitic acid injection. The specific activities of palmitic acid in the 2-acyl positions of phosphatidylcholine and disaturated phosphatidylcholine 0.75 min after injection of labeled palmitic acid were 3.4 and 1.9 times, respectively, the specific activities of palmitic acid in the 1-acyl positions. By 120 min the label had randomized between the 1-acyl and 2-acyl positions, and the kinetics of that randomization were defined for both phosphatidylcholine and disaturated phosphatidylcholine. Choline did not pulse label lung phosphatidylcholine or disaturated phosphatidylcholine. The choline label appeared with equal specific activities in both phosphatidylcholine and disaturated phosphatidylcholine. Thus no analysis of the de novo synthesized product via the CDP-choline pathway was possible.  相似文献   

6.
The incorporation of [1-14C]linoleic and [1-14C]stearic acid and of their delta 6 and delta 9 desaturation products (gamma-linolenic and oleic acids, respectively) into different classes of lipids was studied in liver microsomes of rats in function of the diet (blackcurrant seed oil diet, containing gamma-linolenic acid, versus control diet) and in function of age (3, 6 and 9 months). After delta 6 desaturation, total radioactivity was distributed between phospholipids, especially phosphatidylcholine, and neutral lipids. The desaturation product, gamma-linolenic acid, was totally recovered in the phospholipid fraction. Blackcurrant seed oil, which decreased the rate of delta 6 desaturation in 6- and 9-month-old rats, also decreased the incorporation of radioactivity in total phospholipids, especially in phosphatidylcholine. At 6 months of age, after delta 9 desaturation, the majority of radioactivity was recovered in neutral lipids principally as oleic acid, the desaturation product. The precursor, stearic acid, was highly incorporated into phospholipids, especially in rats on a diet of blackcurrant seed oil.  相似文献   

7.
Intracerebral administration of [3H]arachidonic acid ([3H]ArA) into 19-20-day-old rat embryos, resulted in a rapid incorporation of label into brain lipids. One hour after injection, 55.6 +/- 8.2, 18.0 +/- 3.4, and 13.7 +/- 1.3% of the total radioactivity was associated with phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, respectively. Approximately 10% of radioactivity was found acylated in neutral lipids of which free ArA comprised only 1.5 +/- 0.2% of the total radioactivity. Complete restriction of the maternal-fetal circulation for < or = 40 min did not affect the rate of [3H]ArA incorporation (t1/2 = 2 min) into fetal brain lipids, suggesting an effective acylation mechanism that proceeds irrespective of the impaired blood flow. After a short restriction period (5 min), the radioactivity in diacylglycerol was elevated by 50%. After a longer restriction period (20 min), the radioactivity in the free fatty acid and diacylglycerol fractions increased to values of 130 and 87%, respectively. Polyphosphoinositides prelabeled with either [3H]ArA or 32P were rapidly degraded after 5 min of ischemia. After 20 min, the decrease in phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate radioactivity was 47 and 70%, respectively. Double labeling of phospholipids with [14C]palmitic acid and [3H]ArA indicated a preferential loss of [3H]ArA within the polyphosphoinositide species after 20 min, but not after 5 min of ischemia. The specific activity of [14C]palmitate remained unchanged. The current data suggest phospholipase C-mediated diacylglycerol formation at the beginning of the insult followed by a phospholipase A2-mediated ArA liberation at a later time, both enzymes presumably acting preferentially on polyphosphoinositide species.  相似文献   

8.
Characterization and metabolism of ovine foetal lipids   总被引:6,自引:4,他引:2  
1. Total phospholipid concentrations in liver, kidney and brain of the 140-day ovine foetus were only half of those in comparable maternal tissues. 2. Phosphatidylcholine was the predominant phospholipid in all foetal tissues examined. The most striking difference between foetal and maternal tissues in individual phospholipids was in the heart; foetal heart contained more ethanolamine plasmalogen than choline plasmalogen, whereas in adult tissue the concentration of these was reversed. Sphingomyelin content of foetal brain was only one-sixth of that of maternal brain tissue. 3. Oleic acid (18:1) was the predominant acid in the phospholipid extracted from foetal tissues, except in brain where palmitic acid (16:0) was slightly higher. In phospholipids from adult tissues there was a higher proportion of unsaturated fatty acids (linoleic acid, 18:2, and linolenic acid, 18:3) and a correspondingly lower proportion of oleic acid (18:1). The distribution of fatty acids in the neutral lipid fraction of foetal and maternal tissues was very similar; oleic acid (18:1) was generally the principal component. 4. (14)C derived from [U-(14)C]-glucose and [U-(14)C]fructose infused into the foetal circulation in utero was incorporated into the neutral lipids and phospholipids of heart, liver, kidney, brain and adipose tissue. 5. Phospholipid analysis revealed that the specific activity of phosphatidic acid was higher in liver than in other tissues. The specific activity of phosphatidylethanolamine was less than that of phosphatidylcholine in heart, but in other tissues they were about the same. The specific activities of phosphatidylinositol and phosphatidic acid in brain were very similar and were higher than the other components. The specific activity of phosphatidylserine was highest in liver and brown fat. 6. The pattern of incorporation of (14)C derived from [(14)C]glucose and [(14)C]fructose into foetal neutral lipids was similar. Diglyceride accounted for most of the radioactivity in brain, whereas triglyceride had more label in heart, liver, kidney and fat.  相似文献   

9.
1. The smooth-and rough-microsomal and the light and heavy plasma-membrane fractions of mouse liver homogenates were prepared and characterized by using biochemical markers. 2. The hexosamine/protein ratio was threefold higher in the plasma membranes than in the smooth-microsomal fraction. Glucosamine was bound only to protein, and galactosamine was attached mainly to lipids. 3. [(3)H]-Leucine and [(14)C]glucosamine were injected into animals and the rates of incorporation of radioactivity into the fractions were determined. Both precursors were rapidly incorporated into the microsomal fractions, but plasma membranes showed a slower rate of synthesis which reached a maximum at 2-4h after intravenous administration. 4. The light- and heavy-plasma-membrane fractions showed similar patterns of incorporation, and therefore a precursor-product relationship appears unlikely. 5. Plasma membranes, especially the light subfraction, showed appreciable incorporation of hexosamine into chloroform-methanol-soluble components which were shown to be mainly glycolipids. 6. The results indicate that liver plasma-membrane proteins and glycoproteins are synthesized at similar rates. However, glycolipid synthesis in plasma membranes occurred more rapidly.  相似文献   

10.
1. Lipogenesis was studied in vivo by giving mice 250mg. meals of [U-(14)C]glucose and measuring the disposition and incorporation of label. About 48% of the (14)C dose was eliminated as (14)CO(2) in the first 2hr. At 60min. after administration, 1.0, 1.9 and 11.9% of the dose was recovered as liver glycogen, liver fatty acid and carcass fatty acid respectively. Of the [(14)C]glucose converted into fat in the epididymal pads about 90% was present as glyceride fatty acid and 10% as glyceride glycerol. 2. Hepatic synthesis of fatty acid was depressed by dietary fat to a much greater extent than was synthesis outside the liver. Both feeding with fat and starvation decreased the proportion of the label taken up by adipose tissue present as fat (triglyceride) and increased the proportion of triglyceride label present as glyceride glycerol. These results are consistent with the hypothesis that the primary action of both these conditions in decreasing fat synthesis is to inhibit synthesis of fatty acids. 3. Turnover of body fat labelled in vivo from [U-(14)C]glucose was estimated from the decline in radioactivity measured over the first 24hr. of the experiment. The half-life of liver and extrahepatic fatty acids (excluding epididymal fat) was 16hr. and 3 days respectively. In contrast, no measurable decrease in radioactivity of the fatty acids of epididymal fat was observed for 7 days after administration of the [U-(14)C]glucose.  相似文献   

11.
Phospholipid exchange reactions within the liver cell   总被引:45,自引:32,他引:13  
1. Isolated rat liver mitochondria do not synthesize labelled phosphatidylcholine from CDP-[(14)C]choline or any phospholipid other than phosphatidic acid from [(32)P]phosphate. The minimal labelling of phosphatidylcholine and other phosphoglycerides can be attributed to microsomal contamination. However, when mitochondria and microsomes are incubated together with [(32)P]phosphate, the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine of the reisolated mitochondria become labelled, suggesting a transfer of phospholipids between the two fractions. 2. When liver microsomes or mitochondria containing labelled phosphatidylcholine are independently incubated with the opposite un-labelled fraction, there is a substantial and rapid exchange of the phospholipid between the two membranes. Exchange of phosphatidylinositol also occurs rapidly, whereas phosphatidylethanolamine and phosphatidic acid exchange only slowly. There is no corresponding transfer of marker enzymes. The transfer of phosphatidylcholine does not occur at 0 degrees , and there is no requirement for added substrate, ATP or Mg(2+), but the omission of a heat-labile supernatant fraction markedly decreases the exchange. 3. After intravenous injection of [(32)P]phosphate, short-period labelling experiments of the individual phospholipids of rat liver microsomes and mitochondria in vivo give no evidence for a similar exchange process. However, the incubation of isolated microsomes and mitochondria with [(32)P]phosphate also fails on reisolation of the fractions to demonstrate a precursor-product relationship between the individual phospholipids of the two membranes. 4. The intraperitoneal injection of [(32)P]phosphate results in a far greater proportion of the dose entering the liver than does intravenous administration. After intraperitoneal administration of [(32)P]phosphate the specific radioactivities of the individual phospholipids are in the order microsomes > outer mitochondrial membrane > inner mitochondrial membrane. 5. The incorporation of (32)P into cardiolipin is very slow both in vivo and in vitro. After labelling in vivo the radioactivity in the cardiolipin persists compared with that of the other phospholipids, whose specific radioactivities in the microsomes and mitochondrial fragments decay at a similar rate to that of the acid-soluble phosphate pool. 6. The possibility of phospholipid exchange processes occurring in the liver cell in vivo is discussed, and it is suggested that only a small but highly labelled part of the endoplasmic-reticulum lipoprotein pool is involved in the transfer.  相似文献   

12.
Comparative studies on fucoprotein metabolism of chicken liver and hepatoma Mc-29 have been carried out and the following parameters were determined: the incorporation rate of [14C]fucose into hepatoma and liver total tissue homogenate, acid-soluble and acid-insoluble fractions, acid-soluble nucleotide fraction and into plasma-membrane acid-precipitable fraction; the activity of microsomal and plasma-membrane fucosyltransferase; the electrophoretic pattern of hepatoma and liver plasma-membrane proteins and the incorporation of [14C]fucose into the glycoprotein fractions in both plasma-membrane preparations. It was found that the labelling of hepatoma tissue homogenate and plasma membranes was higher than that of the same liver preparations 3 hr after the [14C]fucose injection. This finding was supported by a considerably elevated hepatoma fucosyltransferase activity. The labelling rate of numerous fucoproteins from hepatoma plasma membranes was greatly increased and some of the individual glycoprotein bands were labelled to a higher extent compared with liver. The data presented show specific alterations of fucose and fucoprotein metabolism which could be considered as a characteristic feature of chicken viral-induced hepatoma Mc-29.  相似文献   

13.
An investigation of the effect of change of total CO(2) concentration from 7 to 43 mM at pH 7.35 in the medium perfusing isolated rat lungs on [U-(14)C]glucose incorporation into lung phospholipids has been carried out. The incorporation of [U-(14)C]glucose into phosphatidylcholine and phosphatidylglycerol of the surfactant fraction and of the remaining lung tissue (residual fraction) was observed. Increased CO(2) concentration increased [U-(14)C]glucose incorporation into phosphatidylcholine of the surfactant fraction and residual fraction by 43 and 50%, respectively, during a 2 hr perfusion. Likewise, incorporation of [U-(14)C]glucose into phosphatidylglycerol was increased 22 and 34% into the surfactant and residual fractions, respectively. The percentage of [U-(14)C]glucose incorporated into the fatty acid moieties of phosphatidylcholine of both fractions increased as a result of increased CO(2) concentration. The increase in the incorporation of [U-(14)C]glucose into the fatty acid moieties of phosphatidylcholine was confirmed by an average increase of 56 and 77% in the specific activity of palmitic acid isolated from phosphatidylcholine of the surfactant and residual fraction, respectively, as a result of increased CO(2) concentration. The results suggest that alteration in extracellular CO(2) concentration affects the de novo synthesis from glucose of phosphatidylcholine and phosphatidylglycerol of the surfactant-lipoprotein fraction of lung.  相似文献   

14.
After 4 hr of the intraperitoneal injection of different doses of (R)-[5-14C]mevalonic acid (MVA), its incorporation into nonsaponifiable and saponifiable lipids was maximal in neonatal chick kidneys and liver, and minimal in brain, spinal cord and skin. Using 14CO2 production from [5-14C]MVA as an index of the shunt pathway not leading to sterols, we have demonstrated for the first time that about 11% of MVA was in vivo metabolized by this pathway in nonmammalian species. Kidneys presented the maximal ability to incorporate MVA into nonsaponifiable and saponifiable lipids at any time considered (15-750 min). The percentage of radioactivity recovered as saponifiable lipids in liver and kidney decreased after 12 hr the injection of MVA. Although the absolute amounts of 14C incorporated in both derivatives were much less in brain, spinal cord and skin than in liver and kidneys, the relative percentages found in the saponifiable fraction were clearly higher in the former tissues, especially in the spinal cord.  相似文献   

15.
The in vivo incorporation of [l-14C]acetate into non-saponifiable lipids was higher in neonatal chick liver than in intestinal mucosa, brain and kidneys, and proportional to the amount of substrate injected (2-20 mumole). 14CO2 expired in the breath was also proportional to the dose of acetate. Radioactivity from [l-14C]acetate accumulated by liver was maximal 30 min after the injection of acetate and decreased afterwards. Acetate was mainly incorporated into cholesterol by all the tissues assayed, although small percentages of lanosterol and squalene were obtained in liver. In this tissue, distribution of radioactivity was practically independent from the dose of substrate injected while in intestinal mucosa, brain and kidneys the percentage of cholesterol increased with this dose. The time course of the in vivo formation of different non-saponifiable lipids by neonatal chick tissues was also studied. More than 90% of radioactivity in this fraction obtained 15 min after the acetate injection was recovered as cholesterol in liver and kidneys, while in brain and intestinal mucosa this percentage was about 50% at this time, increasing afterwards. A high percentage of lanosterol was found in brain and intestinal mucosa 15 min after the injection of acetate.  相似文献   

16.
The metabolism of [14C]nicotine in the cat   总被引:2,自引:0,他引:2       下载免费PDF全文
The metabolism of [2'-(14)C]nicotine given as an intravenous injection in small doses to anaesthetized and unanaesthetized cats has been studied. A method is described for the quantitative determination of [(14)C]nicotine and [(14)C]cotinine in tissues and body fluids. Nanogram amounts of these compounds have been detected. After a single dose of 40mug. of [(14)C]nicotine/kg., 55% of the injected radioactivity was excreted in the urine within 24hr., but only 1% of this radioactivity was unchanged nicotine. [(14)C]Nicotine is metabolized extremely rapidly, [(14)C]cotinine appearing in the blood within 2.5min. of intravenous injection. [(14)C]Nicotine accumulates rapidly in the brain and 15min. after injection 90% of the radioactivity still represents [(14)C]nicotine. Metabolites of [(14)C]nicotine have been identified in liver and urine extracts. [(14)C]Nicotine-1'-oxide has been detected in both liver and urine.  相似文献   

17.
Abstract— The half-life of free [14C]palmitic acid injected intracerebrally into C57BL/10J mice was less than 5 min. The rapid disappearance of radioactivity as palmitic acid was accompanied by increases in the radioactivity of the phosphatidic acids and the diacyl-glycerols. The peak specific radioactivity of the diacylglycerols occurred at about 6-8 min after injection. The triacylglycerols, phosphatidyl ethanolamines and phosphatidyl cholines exhibited increasing amounts of radioactivity during the first 40 min. At 160 min after injection, the distribution of radioactivity was similar to the pattern observed at 12 h. The biosynthetic pathway through the phosphatidic acids and the diacylglycerols to triacylglycerols, phosphatidyl ethanolamines and phosphatidyl cholines is apparently the major pathway in vivo for the esterification of free fatty acids in the brain.  相似文献   

18.
1. Fatty acid synthesis was studied in microsomal preparations from germinating pea (Pisum sativum). 2. The preparations synthesized a mixture of saturated fatty acids up to a chain length of C(24) from [(14)C]malonyl-CoA. 3. Whereas hexadecanoic acid was made de novo, octadecanoic acid and icosanoic acid were synthesized by elongation. 4. The products formed during [(14)C]malonyl-CoA incubation were analysed, and unesterified fatty acids and polar lipids were found to be major products. [(14)C]Palmitic acid represented a high percentage of the acyl-carrier protein esters, whereas (14)C-labelled very-long-chain fatty acids were mainly present as unesterified fatty acids. CoA esters were minor products. 5. The addition of exogenous lipids to the incubation system usually resulted in stimulation of [(14)C]malonyl-CoA incorporation into fatty acids. The greatest stimulation was obtained with dipalmitoyl phosphatidylcholine. Both exogenous palmitic acid and dipalmitoyl phosphatidylcholine increased the amount of [(14)C]-stearic acid synthesized, relative to [(14)C]palmitic acid. Addition of stearic acid increased the amount of [(14)C]icosanoic acid formed. 6. [(14)C]Stearic acid was elongated more effectively to icosanoic acid than [(14)C]stearoyl-CoA, and its conversion was not decreased by addition of unlabelled stearoyl-CoA. 7. Incorporation of [(14)C]malonyl-CoA into fatty acids was markedly decreased by iodoacetamide and 5,5'-dithiobis-(2-nitrobenzoic acid). Palmitate elongation was sensitive to arsenite addition, and stearate elongation to the presence of Triton X-100 or fluoride. The action of fluoride was not, apparently, due to chelation. 8. The microsomal preparations differed from soluble fractions from germinating pea in (a) synthesizing very-long-chain fatty acids, (b) not utilizing exogenous palmitate-acyl-carrier protein as a substrate for palmitate elongation and (c) having fatty acid synthesis stimulated by the addition of certain complex lipids.  相似文献   

19.
Pretreatment of the D-deficient chick with 1,25-dihydroxyvitamin D3 increases de novo synthesis of phosphatidylcholine by a stimulation of CDP-choline: sn-1,2-diacylglycerol choline-phosphotransferase reaction. The time course of change in the incorporation of [3H]choline and [14C]ethanolamine into the brush border lipid fraction after 1,25-dihydroxyvitamin D3 treatment correlates closely with the time course of change in calcium uptake into the brush border membrane vesicles. Prior treatment with cycloheximide does not block this increase in phosphatidylcholine synthesis. In addition, 1,25-dihydroxyvitamin D3 administration increases the incorporation of [3H]arachidonic acid into the phosphatidylcholine fraction of the brush border to a great extent but does not increase the incorporation of [3H]palmitic acid into the phosphatidylcholine fraction. The incorporation of these 3H labeled fatty acids into diacylglycerol is not changed by 1,25-dihydroxyvitamin D3. These data indicate that 1,25-dihydroxyvitamin D3 enhances the synthesis of phosphatidylcholine independent of new protein synthesis, and also increases the incorporation of unsaturated fatty acids into phosphatidylcholine. From these results we suggest that changes in phospholipid metabolism in the enterocyte are the mechanisms by which 1,25-dihydroxyvitamin D3 acts to enhance calcium entry across the brush border membrane.  相似文献   

20.
Mouse kidney and liver were found to increase their levels of radioactivity above that of serum from 2 to 60 min after administration of [6-14C]orotic acid. In spleen, thymus and brain, the radioactivity level reached a maximum soon after the injection and then decreased, as did that in serum. Sixty minutes after the injection, 44% of the administered isotope dose was found in the kidneys, 22% in the liver and 0.75% in the spleen. The 14C activity in liver UTP increased rapidly and then remained constant for 60 min. The ratio between the activities in uridine phosphates and UDP-sugars was 3:4 from 10- 60 min after injection. In the liver and kidneys, the RNA 14C activities at 60 min after injection were 15% of the activity in their acid-soluble fractions. Intraperitoneal administration was found to be preferable to intravenous administration for studies on nucleotides and RNA in mouse liver, due to the delayed incorporation of the [14C]orotic acid activity into the nucleotide pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号