首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leg power is an important component in assessing both performance-related and health-related fitness. The Lewis equation and nomogram have been used for years to estimate leg power. A recent evaluation of the Lewis equation and further research led to the development of the Sayers equation. This equation provides an estimate of peak leg power, which has greater relevance than average power. Our purpose was to provide a simple and effective nomogram for calculating peak leg power output. The Sayers equation was transformed to an alignment nomogram and evaluated for facility of use and accuracy. The resultant alignment nomogram is easy to use and generates values for peak leg power in the vertical jump, which are well within the precision of the regression equation (r > 0.9999, CV < 0.2%). Interobserver error was less than 0.3% with a correlation of 0.9999. The Keir nomogram provides a simple and effective representation of the Sayers equation for use in both performance-related and health-related fitness assessments.  相似文献   

2.
When two or more tight-binding inhibitors are present in an enzyme assay, the equation that relates the initial velocity v to the concentration of reactants cannot be written in an algebraically explicit form. Rather, for n inhibitors it is an implicit polynomial equation of degree n + 1 with respect to v. The complexity of the polynomial coefficients dramatically increases with each added inhibitor. Solving the transcendental rate equation by traditional methods of numerical mathematics has proven tedious because of the sensitivity of these methods to initial estimates and because of the existence of multiple roots. However, the equation can be rearranged into a convenient recursive form, one in which the velocity appears on both sides and the solution is found iteratively. The algebraic form of the recursive rate equation is remarkably simple and differs from the rate equation for classical rather than tight-binding inhibition only by an added term. The numerical stability and the speed of convergence were tested on the case of two competitive inhibitors. Initial estimates of velocity that spanned 12 orders of magnitude converged within five iterations. The velocities computed with the recursive method for a single tight-binding inhibitor were identical with the values predicted by the Morrison equation. The method is used to analyze experimental data for the inhibition of rat liver dihydrofolate reductase by mixtures of the anticancer drug methotrexate and its metabolic precursor form, methotrexate-alpha-aspartate (a prodrug).  相似文献   

3.
We derive a closed master equation for an individual-based population model in continuous space and time. The model and master equation include Brownian motion, reproduction via binary fission, and an interaction-dependent death rate moderated by a competition kernel. Using simulations we compare this individual-based model with the simplest approximation, the spatial logistic equation. In the limit of strong diffusion the spatial logistic equation is a good approximation to the model. However, in the limit of weak diffusion the spatial logistic equation is inaccurate because of spontaneous clustering driven by reproduction. The weak-diffusion limit can be partially analyzed using an exact solution of the master equation applicable to a competition kernel with infinite range. This analysis shows that in the case of a top-hat kernel, reducing the diffusion can increase the total population. For a Gaussian kernel, reduced diffusion invariably reduces the total population. These theoretical results are confirmed by simulation.  相似文献   

4.
分形介质中输运现象的分数阶扩散方程是一个积分-偏微分方程,含有由分形Hausdorff维数d_f和反常扩散指数d_w确定的参数.对于这类方程的求解问题,给出了尺度变换群的不变子并且导出了关于尺度不变解的积分-常微分方程.最后利用Mellin变换和Fox函数得到尺度不变解.  相似文献   

5.
P Easthope 《Biorheology》1989,26(1):37-44
A three-dimension dyadic form of the Walburn-Schneck constitutive equation for blood is presented. The dyadic equation is demonstrated to have the symmetries of material frame indifference and flow reversal and to be consistent with the scalar equation in Couette flow. The problem of flow in a tube or circular cross section is solved as an example.  相似文献   

6.
稳定有界的Logistic方程的最优捕获策略   总被引:3,自引:0,他引:3  
考虑单种群非自治的Logistic方程的开采问题.在R^ 中都存在均值的意义下,作为周期和概周期函数的推广,首先给出稳定有界函数的概念.然后定义一个新的最终最优收获策略用于处理我们的问题.选择单位时间的最大持久收益的极限均值作为管理目标。同时得到了最佳的种群水平.作为应用,我们以概周期系数的Logistic方程为例,表明我们的结果不仅推广了经典的Clark关于自治的Logistic方程的收获问题,而且推广了范猛和王克的关于周期的Logistic方程的收获问题的结果.  相似文献   

7.
Transient behavior of a single loop solute cycling countercurrent multiplier is described by a Volterra type integral equation similar to that describing circulation of an indicator in the systemic circulation. Solution of the equation is given for pumping from ascending to descending flow proportional to concentration in ascending flow and no back leak. This exact solution is compared with an approximate solution of the integral equation and with a solution in which the flow system is represented by a finite Markov chain. Agreement between the Markov approximation and the exact solution is excellent.  相似文献   

8.
Biosynthetic networks link to growth and reproduction processes through template-directed synthesis of macromolecules such as polynucleotides and polypeptides. No rate equation exists that captures this link in a way that it can effectively be incorporated into a single computational model of the overall process. This paper describes the derivation of such a generic steady-state rate equation for catalysed, template-directed polymerisation reactions with varying monomer stoichiometry and varying chain length. The derivation is based on a classical Michaelis–Menten mechanism with template binding and an arbitrary number of chain elongation steps that produce a polymer composed of an arbitrary number of monomer types. The rate equation only requires the identity of the first dimer in the polymer sequence; for the remainder only the monomer composition needs be known. Further simplification of a term in the denominator yielded an equation requiring no positional information at all, only the monomer composition of the polymer; this equation still gave an excellent estimate of the reaction rate provided that either the monomer concentrations are at least half-saturating, or the polymer is very long.  相似文献   

9.
A mathematical model for oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics is analyzed by means of an intergral equation method. It is shown that an integral equation formulation can be used to obtain a numerical solution associated with this boundary and initial value problem. Through an illustrative numerical calculation we are able to obtain an accurate solution for both the steady and transient problems. Finally, a comparison is made with the numerical solution of McElwain and the variational solution of Anderson and Arthurs for the steady state and Lin's result concerning the unsteady state.  相似文献   

10.
Free oscillations of upright plant stems, or in technical terms, slender tapered rods with one end free, can be described by considering the equilibrium between bending moments in the form of a differential equation with appropriate boundary conditions. For stems with apical loads, where the mass of the stem is negligible, Mathematica 4.0 returns solutions for tapering modes α = 0, 0.5, and 1. For other values of α, including cases where the modulus of elasticity varies over the length of the stem, approximations leading to an upper and a lower estimate of the frequency of oscillation can be derived. For the limiting case of ω = 0, the differential equation is identical with Greenhill's equation for the stability against Euler buckling of a top-loaded slender pole. For stems without top loads, Mathematica 4.0 returns solutions only for two limiting cases, zero gravity (realized approximately for oscillations in a horizontal orientation of the stem) and for ω = 0 (Greenhill's equation). Approximations can be derived for all other cases. As an example, the oscillation of an Arundo donax plant stem is described.  相似文献   

11.
Zhu M 《农业工程》2012,32(3):156-159
Differential equation problem is an important research topic in the international academia. In accordance with certain ecological phenomena, previous research was conducted based on simple observational and statistical data. But this approach does not effectively study the essence of the ecological phenomena. Recently, one dynamic approach has been proposed for the study of ecology in the international academia. According to this approach, first of all, the ecology is reduced to the differential equation model which represents the essential phenomenon, and then the dynamic law and rules of mathematics and biology will be studied. Currently, an extensive research is conducted on the differential equation problem. This paper primarily explores a type of competitive ecological model, which is a system of differential equation with infinite integral. we first study the existence of positive periodic solution to this model, and then present sufficient conditions for the global attractivity of positive periodic solutions.  相似文献   

12.
The Land sensitivity equation is a well-known tool for comparing optical performance between eyes. Despite this, the equation has never been experimentally tested. Here, we present, to our knowledge, the first experimental validation of the equation. We have investigated different insect species active at different intensities, and possessing different types of compound eyes, to compare ratios of calculated sensitivities to ratios determined experimentally. Experimental optical sensitivities were measured by adjusting the intensity of an external light source until photoreceptors in the different eyes produced roughly equal numbers of photon responses ('bumps') per second. The sensitivity ratios obtained in this manner agree well with those obtained using the equation. We conclude that the Land equation remains an excellent tool for comparing sensitivities between different eyes.  相似文献   

13.
A formal stochastic partial differential equation is introduced as a model for the diffusion of a biological population with a fluctuating birthrate in an environment with a finite local carrying capacity. A unique solution is constructed for a related integral equation, and a perturbation expansion is derived when the fluctuations in the birthrate are multiplied by a small parameter.  相似文献   

14.
The steady state velocity equation for a bireactant enzyme in the presence of a partial inhibitor or nonessential activator, M, contains squared substrate concentration and higher-ordered M concentration terms. The equation is too complex to be useful in kinetic analyses. Simplification by the method of Cha (J. Biol. Chem. 243, 820 825 (1968)) eliminates squared substrate concentration terms, but retains higher-ordered terms in [M]. It is shown that if strict equilibrium is assumed between free E, M, and EM and for all but one other M-binding reaction, a velocity equation is obtained for an ordered bireactant enzyme that is first degree in all ligands in the absence of products. The equation is an approximation (because it was derived assuming only one M-binding reaction in the steady state), but it contains five inhibition (or activation) constants associated with M, all of which can be obtained by diagnostic replots and/or curve-fitting procedures. The equation also provides a framework for obtaining limiting constants (V'max, K'ia, K'mA, K'mB) that characterize the enzyme at saturating M. The same approach is applicable to an enzyme that catalyzes a steady state ping pong reaction.  相似文献   

15.
The diffusion equation for long narrow channels which lie parallel to a rectangular coordinate and have varying cross-sectional areas may be approximated by an equation which involves only one space variable and the average concentration at each value of this space variable. This equation is derived and is discussed along with its assumptions.  相似文献   

16.
A neural net is taken to consist of a semi-infinite chain of neurons with connections distributed according to a certain probability frequency of the lengths of the axones. If an input of excitation is “fed” into the net from an outside source, the statistical properties of the net determine a certain steady state output. The general functional relation between the input and the output is derived as an integral equation. For a certain type of probability distribution of connections, this equation is reducible to a differential equation. The latter can be solved by elementary methods for the output in terms of the input in general and for the input in terms of the output in special cases.  相似文献   

17.
The linear noise approximation is a useful method for stochastic noise evaluations in genetic regulatory networks, where the covariance equation described as a Lyapunov equation plays a central role. We discuss the linear noise approximation method for evaluations of an intrinsic noise in autonomously oscillatory genetic networks; in such oscillatory networks, the covariance equation becomes a periodic differential equation that provides generally an unbounded covariance matrix, so that the standard method of noise evaluation based on the covariance matrix cannot be adopted directly. In this paper, we develop a new method of noise evaluation in oscillatory genetic networks; first, we investigate structural properties, e.g., orbital stability and periodicity, of the solutions to the covariance equation given as a periodic Lyapunov differential equation by using the Floquet-Lyapunov theory, and propose a global measure for evaluating stochastic amplitude fluctuations on the periodic trajectory; we also derive an evaluation formula for the period fluctuation. Finally, we apply our method to a model of circadian oscillations based on negative auto-regulation of gene expression, and show validity of our method by comparing the evaluation results with stochastic simulations.  相似文献   

18.
19.
The existence of spatially localized solutions in neural networks is an important topic in neuroscience as these solutions are considered to characterize working (short-term) memory. We work with an unbounded neural network represented by the neural field equation with smooth firing rate function and a wizard hat spatial connectivity. Noting that stationary solutions of our neural field equation are equivalent to homoclinic orbits in a related fourth order ordinary differential equation, we apply normal form theory for a reversible Hopf bifurcation to prove the existence of localized solutions; further, we present results concerning their stability. Numerical continuation is used to compute branches of localized solution that exhibit snaking-type behaviour. We describe in terms of three parameters the exact regions for which localized solutions persist.  相似文献   

20.
Spike-timing-dependent synaptic plasticity has recently provided an account of both the acuity of sound localization and the development of temporal-feature maps in the avian auditory system. The dynamics of the resulting learning equation, which describes the evolution of the synaptic weights, is governed by an unstable fixed point. We outline the derivation of the learning equation for both the Poisson neuron model and the leaky integrate-and-fire neuron with conductance synapses. The asymptotic solutions of the learning equation can be described by a spectral representation based on a biorthogonal expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号