首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined by (15)N, (1)H, and (13)C NMR, the chemical behavior of the six histidines in subtilisin BPN' and their PMSF and peptide boronic acid complexes in aqueous solution as a function of pH in the range of from 5 to 11, and have assigned every (15)N, (1)H, C(epsilon 1), and C(delta2) resonance of all His side chains in resting enzyme. Four of the six histidine residues (17, 39, 67, and 226) are neutrally charged and do not titrate. One histidine (238), located on the protein surface, titrates with pK(a) = 7.30 +/- 0.03 at 25 degrees C, having rapid proton exchange, but restricted mobility. The active site histidine (64) in mutant N155A titrates with a pK(a) value of 7.9 +/- 0.3 and sluggish proton exchange behavior, as shown by two-site exchange computer lineshape simulation. His 64 in resting enzyme contains an extremely high C(epsilon 1)-H proton chemical shift of 9.30 parts per million (ppm) owing to a conserved C(epsilon 1)-H(.)O=C H-bond from the active site imidazole to a backbone carbonyl group, which is found in all known serine proteases representing all four superfamilies. Only His 226, and His 64 at high pH, exist as the rare N(delta1)-H tautomer, exhibiting (13)C(delta1) chemical shifts approximately 9 ppm higher than those for N(epsilon 2)-H tautomers. His 64 in the PMSF complex, unlike that in the resting enzyme, is highly mobile in its low pH form, as shown by (15)N-(1)H NOE effects, and titrates with rapid proton exchange kinetics linked to a pK(a) value of 7.47 +/- 0.02.  相似文献   

2.
Qureshi SH  Moza B  Yadav S  Ahmad F 《Biochemistry》2003,42(6):1684-1695
The denaturation of bovine and horse cytochromes-c by weak salt denaturants (LiCl and CaCl(2)) was measured at 25 degrees C by observing changes in molar absorbance at 400 nm (Delta epsilon(400)) and circular dichroism (CD) at 222 and 409 nm. Measurements of Delta epsilon(400) and mean residue ellipticity at 409 nm ([theta](409)) gave a biphasic transition for both modes of denaturation of cytochromes-c. It has been observed that the first denaturation phase, N (native) conformation <--> X (intermediate) conformation and the second denaturation phase, X conformation <--> D (denatured) conformation are reversible. Conformational characterization of the X state by the far-UV CD, 8-anilino-1-naphthalene sulfonic acid (ANS) binding, and intrinsic viscosity measurements led us to conclude that the X state is a molten globule state. Analysis of denaturation transition curves for the stability of different states in terms of Gibbs energy change at pH 6.0 and 25 degrees C led us to conclude that the N state is more stable than the X state by 9.55 +/- 0.32 kcal mol(-1), whereas the X state is more stable than the D state by only 1.40 +/- 0.25 kcal mol(-1). We have also studied the effect of temperature on the equilibria, N conformation <--> X conformation and X conformation <--> D conformation in the presence of different denaturant concentrations using two different optical probes, namely, [theta](222) and Delta epsilon(400). These measurements yielded T(m), (midpoint of denaturation) and Delta H(m) (enthalpy change) at T(m) as a function of denaturant concentration. A plot of Delta H(m) versus corresponding T(m) was used to determine the constant-pressure heat capacity change, Delta C(p) (= ( partial differential Delta H(m)/ partial differential T(m))(p)). Values of Delta C(p) for N conformation <--> X conformation and X conformation <--> D conformation is 0.92 +/- 0.02 kcal mol(-1) K(-1) and 0.41 +/- 0.01 kcal mol(-1) K(-1), respectively. These measurements suggested that about 30% of the hydrophobic groups in the molten globule state are not accessible to the water.  相似文献   

3.
The effect of pH and temperature (straight theta) on the overall performance indicators (i.e., solute recovery, rho, and Faraday, eta, efficiencies; specific energy consumption, epsilon, solute, JS, and water, JW, fluxes) of batch electrodialytic recovery of citric acid from model solutions was assessed at different values of feed solute concentration (cSf) and electric current density (j). Regardless of the initial feed concentration used, rho and JS were found to be independent of straight theta; eta and JW exhibited a positive trend with respect to straight theta, while epsilon a negative one. At the maximum temperature tested (33 degrees C), as the pH of the feed solution was varied from 3 to 7, rho increased from 0.90 +/- 0.08 to 0.97 +/- 0.02, eta grew from 0.09 +/- 0.02 to 0.50 +/- 0.01, JS practically doubled, epsilon reduced about 8 times, but JW increased from 3 to 4 times. So, the optimal conditions for this technique are to be determined by balancing the savings in the investment and maintenance costs against the energy costs. Copyright John Wiley & Sons, Inc.  相似文献   

4.
The complexation of cyclo(Ala*-Ala) with the cobaltous ions in aqueous solution was investigated by 17O and 14N n.m.r. spectroscopy. The 17O and 14N transverse relaxation time (T2p) and chemical shift (delta omega a) of cyclo(Ala*-Ala) were measured as a function of the temperature at pH = 7.03 +/- 0.02, and pH = 6.45 +/- 0.02, and as a function of pH at room temperature. No effects of pH on the transverse relaxation time and chemical shift were observed. Complementary 17O studies of the solvent water molecules were also carried out. The hyperfine coupling constant and the entropy and enthalpy of activation for the exchange of cyclo(Ala*-Ala) and water molecules between the coordinated and noncoordinated states were determined by least-square fit of theoretical equation for the chemical shift delta omega a to experimental data. The hyperfine coupling constant of the peptide bound oxygen was determined to be (-1.6 +/- 0.1) X 10(5) Hz and the entropy and enthalpy (32.0 +/- 3.0) kJ/mol and (-12.0 +/- 1.0) e.u, respectively. Information obtained from 17O n.m.r. study allows some inferences concerning the probable coordination sphere of the cobaltous ion. There are three types of complexes: Co(H2O)6(2+), CoL X 5H2O and CoL2 X 4H2O, with relative concentrations 19.9%, 2.9%, and 77.2%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1-[2-Amino-5-(6-carboxyindol-2-yl)phenoxyl]-2-(2'- amino-5'-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid (indo-1) and 2-[2-(bis(carboxymethyl)amino-5-methylphenoxy) methyl]-6- methyl-8-[bis-(carboxymethyl)amino]quinoline (quin-2) are sensitive, spectral indicators for Zn2+. Additions of subsaturating Zn2+ to 10-80 microM indo-1 or quin-2 at pH 7.0 produce uv difference spectra with isosbestic wavelengths at 342 and 282 nm or at 342, 317, and 252 nm, respectively. Formation of 1:1 Zn2+:indicator complexes at pH 7.0 and 20 degrees C in the absence (presence) of 100 mM KCl gives delta epsilon max = -2.4 +/- 0.2 X 10(4) M-1 cm-1 at 367 nm (-2.1 +/- 0.2 X 10(4) M-1 cm-1 at 365 nm) for indo-1 and delta epsilon max = -2.7 +/- 0.1 X 10(4) M-1 cm-1 at 266 nm (-2.6 +/- 0.1 X 10(4) M-1 cm-1 at 265 nm) for quin-2. Competition experiments at pH 7.0 and 20 degrees C with indo-1 and quin-2 and also 4-(2-pyridylazo)resorcinol (PAR) as the second chelator in the absence (presence) of 100 mM KCl yield apparent affinity constants: K'A = 2.5 +/- 1.0 X 10(10) M-1 (6.2 +/- 0.5 X 10(9) M-1) for indo-1 binding Zn2+ and K'A = 9.4 +/- 3.3 X 10(11) M-1 (2.7 +/- 0.1 X 10(11) M-1) for quin-2 binding Zn2+. The above constants provide the basis for rapid steady-state spectrophotometric determinations of the affinity of a protein for Zn2+ with K'A approximately 10(10) - 10(13) M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The acceptor quinone complex of Rhodopseudomonas viridis reaction centers   总被引:3,自引:0,他引:3  
The acceptor complex of isolated reaction centers from Rhodopseudomonas viridis contains both menaquinone and ubiquinone. In a series of flashes the ubiquinone was observed to undergo binary oscillations in the formation and disappearance of a semiquinone, indicative of secondary acceptor (QB) activity. The oscillating signal, Q-B, was typical of a ubisemiquinone anion with a peak at 450 nm (delta epsilon = 6 mM-1 X cm-1) and a shoulder at 430 nm. Weak electrochromic bandshifts in the infrared were also evident. The spectrum of the reduced primary acceptor (Q-A) exhibited a major peak at 412 nm (delta epsilon = 10 mM-1 X cm-1) consistent with the assignment of menaquinone as QA. The Q-A spectrum also had minor peaks at 385 and 455 nm in the blue region. The same spectrum was recorded after quantitative removal of the secondary acceptor, when only menaquinone was present in the reaction centers. Spectral features in the near-infrared due to Q-A were attributed to electrochromic effects on bacteriochlorophyll (BChl) b and bacteriopheophytin (BPh) b pigments resulting in a distinctive split peak at 810 and 830 nm (delta epsilon = 8 mM-1 X cm-1). The menaquinone was identified as 2-methyl-3-nonylisoprenyl-1,4-naphthoquinone (menaquinone-9). The native QA activity was uniquely provided by this menaquinone and ubiquinone was not involved. QB activity, on the other hand, displayed at least a 40-fold preference for ubiquinone (Q-10) as compared to menaquinone. Thus, both quinone-binding sites display remarkable specificity for their respective quinones. In the absence of donors to P+, charge recombination of the P+Q-A and P+Q-B pairs had half-times of 1.1 +/- 0.2 and 110 +/- 20 ms, respectively, at pH 9.0, indicating an electron-transfer equilibrium constant (Kapp2) of at least 100 for Q-AQB in equilibrium QAQ-B. Also observed was a slow recombination of the cytochrome c-558+ Q-A pair, with t 1/2 = 2 +/- 0.5 s at pH 6.  相似文献   

7.
The kinetics of electron transfer between Fe(EDTA)2- and meso-tetra sulphonated phenyl porphyrin iron(III)-apomyoglobin have been studied by applying stopped-flow mixing and monitoring photometric changes at soret band (429 nm). The studies were carried out at pH's 6, 6.5, 7, 7.5, and 8 and at temperature between 10 and 40 degrees C. The mechanism proposed on the basis of the dependence of kobsd on Fe(EDTA)2- concentrations at various pH's, followed the rate equation: kobsd = ka[H+] + Kakb/[H+] + Ka.[Fe(EDTA)2-] The values of rate parameters calculated using a weighted non-linear least-squares analysis were: ka, 528 +/- 2 sec-1; kb, 25 +/- 1 sec-1; and Ka, 2.0 +/- 0.1 microM at 25 degrees C and 0.5 M sodium phosphate, and those of thermodynamic parameters calculated by the Eyring equation were: delta H*, 8.1 +/- 0.3 kcal mole-1 and delta S*, -23.4 +/- 1.1 eu at pH 7 and 0.5 M sodium phosphate.  相似文献   

8.
The uv-visible spectra of 7,8-didemethyl-8-hydroxy-5-deazaflavin-5'-phosphoryllactyl glutamate (coenzyme F420), a naturally occurring 5-deazaflavin derivative, in three different buffers changed with a rise in temperature; the effect on the extinction coefficient at 420 nm (epsilon 420) was as follows: In phosphate-buffered solutions at pH less than 7.5, the epsilon 420 increased (at pH 5.0 for a temperature shift from 15 to 60 degrees C, delta epsilon 420 was +87%), but between pH 7.5 and 8, epsilon 420 changed very little. At pH greater than 8.0 in phosphate- or borate-buffered solutions, epsilon 420 decreased slightly. In morpholineethanesulfonic acid (Mes)-buffered F420 solutions at pH 5 and 5.5, epsilon 420 changed very little, whereas at pH 6-8, the epsilon 420 decreased. Absorbance of F420 at 401 nm in phosphate buffer at pH 5 to 9 was not significantly affected by temperature. Changes in epsilon 420 due to temperature change corresponded to changes in the pKa of 8-OH of the deazaflavin molecule; studies with adenylated F420 showed that the 8-OH of F420 was responsible for these changes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The nature of the binding of saccharides to Ricinus communis agglutinin was studied by ultraviolet difference spectroscopy. Upon binding of galactose and galactose-containing saccharides, R. communis agglutinin displayed difference spectra with an extreme maximum at 291-293 nm and a smaller maximum at 284-285 nm. Such difference spectra suggest that the environment of a tryptophan residue located at or near the saccharide-binding site of R. communis agglutinin is being changed by an interaction between a tryptophan residue and the bound saccharides. The value of the difference spectra (delta epsilon) increased upon progressive addition of saccharide until the saccharide binding site was saturated with ligand. From the increase in delta epsilon at 291-293 nm, the association constants were obtained for the R. communis agglutinin-saccharide interaction over the temperature range 5-35 degrees C and various pH values. The results clearly demonstrate that the association constants are nearly equal in the range of pH 5-8, but decrease beyond the above pH range and with elevation of temperature. From the thermodynamic parameters for the binding of various saccharides to R. communis agglutinin, we suggest that there exists a subsite structure in the saccharide-binding site of the R. communis agglutinin molecule.  相似文献   

10.
It is shown that 12-(S)-hydroxy-(5Z, 8E, 10E)-heptadecatrienoic acid (5-cis-HHT)--a physiological metabolite of arachidonic acid--is acid-catalyzed converted into a less polar substance with its maximum UV-absorption at (1)max=232 nm and a molar absorptivity of about epsilon=26600 +/- 200 M(-1)cm(-1). Using a reversed-phase high-performance liquid chromatographic (HPLC) method this equilibrium reaction (K(c) = 1.78 +/- 0.05 at pH 1.10 and 298 K) could be thermodynamicly characterized as a pH dependent, exergonic and exothermic reaction according to kinetics of a first order reaction (at pH 1.10 and 298 K: delta(R)G(o) = -1.42 +/- 0.07 kJ mol(-1), delta(R)H(o) = -3.50 +/- 0.9 kJ mol(-1), delta(R)S(o) = 7.0 +/- 3.0 J mol(-1)*K, delta(R)H*f = 100.0 +/- 4.0 kJ mol(-1)). Kinetic data for several pH-values and temperatures are presented. These data and structural characterization by gaschromatography-mass spectrometry (GC/MS) lead to the conclusion that 5-cis-HHT is isomerized to 12-(S)-hydroxy-(5E, 8E, 10E)-heptadecatrienoic acid (5-trans-HHT).  相似文献   

11.
A continuous spectrophotometric assay was developed for the adenosylcobalamin-dependent 2-methyleneglutarate mutase from Clostridium barkeri. Thereby the product (R)-3-methylitaconate is converted by the delta-isomerase from the same organism to 2,3-dimethylmaleate which absorbs at 240 nm, much higher than both parent compounds (delta epsilon = 3.7 mM-1.cm-1). In addition a discontinuous assay using the facile formation of 2,3-dimethylmaleic anhydride in aqueous solution at pH 0-1 (delta epsilon = 4.0 mM-1.cm-1 at 256 nm) was established. The mutase and the isomerase were purified together by chromatography on quaternary-amine-Sepharose (Q-Sepharose) and on cyanocobalamin-agarose. The enzymes were separated and obtained in homogenous forms by preparative PAGE in non-denaturing buffer. Both enzymes appear to be homotetramers with subunits of 70 kDa (mutase) and 50 kDa (isomerase). The equilibrium constants for both reactions were determined at I = 0.1 M and 25 degrees C: K1, app = [(R)-3-methylitaconate].[2-methyleneglutarate]-1 = 0.26 +/- 0.04, K2,app = [2,3-dimethylmaleate].[(R)-3-methylitaconate]-1 = 7.40 +/- 0.21.  相似文献   

12.
The fluorescence at 370 nm of the 7-methylguanosine residue (m7G) is found to be quenched when the base residue is involved in a stacking interaction with the adenosine residue in the cap structure m7G5' pppA of an eukaryotic mRNA. On the basis of the observed degree of quenching, the amounts of the stacked and unstacked forms in the cap structure have been determined at various temperatures and pH's. It has been found that at pH 6.2 effective enthalpy and entropy in the unstacked leads to stacked change are delta H degrees = 4.4 +/- 0.1 kcal/mole and delta S degrees = - 14.3 +/- 0.2 e.u., respectively. The pka value for the m7G residue is found to be 7.7 at 10 degrees C and 7.3 at 30 degrees C. The stacked structure seems to be less favourable in the deprotonated form that occurs in the higher pH solution. A similar analysis of some other cap structures indicates that the stacked form in m7G5' pppN structure is favourable if N is a purine nucleoside or a 2'-O-methylpyrimidine nucleoside but not for an unmethylated pyrimidine nucleoside.  相似文献   

13.
The nuclear conversion of testosterone (T) to dihydrotestosterone (DHT) and androstenedione (delta 4A) to androstanedione (5 alpha-Adione) was compared in the separated stromal and epithelial fractions of hyperplastic (n = 6) and malignant (n = 3) prostatic tissues. Assay conditions were linear with respect to time and protein concentration and were optimal for NADPH concentration. The apparent Km values for the stromal enzymes were 0.2 and 0.02 microM for hyperplasia and carcinoma, respectively, using T as substrate. The apparent Km values, using delta 4A as substrate, were 0.03 and 0.02 microM, respectively. Apparent Vmax values for the stromal formation of DHT were 16.5 +/- 5.4 and 1.97 +/- 0.45 pmol/mg protein/30 min incubation, respectively, for the hyperplastic and malignant tissues. The apparent Vmax values for the formation of 5 alpha-Adione were 2.8 +/- 1.3 and 6.5 +/- 1.2 pmol/mg/protein/30 min incubation. The apparent Km values for the epithelial enzyme, for hyperplastic and malignant tissue were 0.04 and 0.04 microM, for T, and 0.05 and 0.03 microM for delta 4A. The respective apparent Vmax values were 4.6 +/- 0.93 and 0.65 +/- 0.07 for DHT and 2.0 +/- 0.86 and 6.4 +/- 0.45 pmol/mg protein/30 min incubation for 5 alpha-Adione. delta 4A was a competitive inhibitor of T 5 alpha-reduction. These results provide further evidence that different rates of 5 alpha-reduction at least partially explain the differences in androgen levels seen in the hyperplastic and the malignant prostate.  相似文献   

14.
Earlier studies have reported that trimethylamine N-oxide (TMAO), a naturally occurring osmolyte, is a universal stabilizer of proteins because it folds unstructured proteins and counteracts the deleterious effects of urea and salts on the structure and function of proteins. This conclusion has been reached from the studies of the effect of TMAO on proteins in the pH range 6.0-8.0. In this pH range TMAO is almost neutral (zwitterionic form), for it has a pK(a) of 4.66 +/- 0.10. We have asked the question of whether the effect of TMAO on protein stability is pH-dependent. To answer this question we have carried out thermal denaturation studies of lysozyme, ribonuclease-A, and apo-alpha-lactalbumin in the presence of various TMAO concentrations at different pH values above and below the pK(a) of TMAO. The main conclusion of this study is that near room temperature TMAO destabilizes proteins at pH values below its pK(a), whereas it stabilizes proteins at pH values above its pK(a). This conclusion was reached by determining the T(m) (midpoint of denaturation), delta H(m) (denaturational enthalpy change at T(m)), delta C(p) (constant pressure heat capacity change), and delta G(D) degrees (denaturational Gibbs energy change at 25 degrees C) of proteins in the presence of different TMAO concentrations. Other conclusions of this study are that T(m) and delta G(D) degrees depend on TMAO concentration at each pH value and that delta H(m) and the delta C(p) are not significantly changed in presence of TMAO.  相似文献   

15.
Effects of non-ionic surfactants N-alkyl-N,N-dimethylamine-N-oxides (C(n)NO, n is the number of alkyl carbons) on the structure of egg yolk phosphatidylcholine (EYPC) bilayers in the lamellar fluid phase was studied by small-angle X-ray diffraction as a function of H(2)O:EYPC and C(n)NO:EYPC molar ratios. The bilayer thickness d(L) and the lipid surface area at the bilayer-aqueous interface S(L) were calculated from the repeat period, d of the lamellar phase, based on the model that water and EYPC + CnNO molecules form separated layers and that their molecular volumes are additive. In the studied range of m=CnNO:EYPC molar ratios up to 1:1, d(L) and S(L) change linearly. The slopes Delta L = delta dL/ delta m and Delta S= delta S L / delta m are equal to -0.876 +/- 0.027 nm and 0.347 +/- 0.006 nm2 for C(6)NO, -1.025+/-0.060 nm and 0.433+/-0.025 nm(2) for C(8)NO, -0.836+/-0.046 nm and 0.405+/-0.018 nm(2) for C(10)NO, -0.604+/-0.015 nm and 0.375+/-0.007 nm(2) for C(12)NO, -0.279+/-0.031 nm and 0.318+/-0.005 nm(2) for C(14)NO, -0.0865+/-0.070 nm and 0.2963 +/-0.014 nm(2) for C(16)NO, and -0.040+/-0.022 nm and 0.297+/- 0.002 nm(2) for C(18)NO, respectively, at full bilayer hydration. The peak-peak distance in the bilayer electron density profile, which relates to the P-P distance d(PP), obtained from the first four diffraction peaks by the Fourier transform also depends linearly on m, and the slope Delta PP = delta dPP/delta m is -0.528+/-0.065 nm for C(6)NO, -0.680+/-0.018 nm for C(8)NO, -0.573+/-0.021 nm for C(10)NO, -0.369+/-0.075 nm for C(12)NO, -0.190+/-0.015 for C(14)NO, -0.088+/-0.016 nm for C(16)NO and -0.094+/-0.016 nm for C(18)NO. The effects of C(n)NO on Delta(L), Delta(S) and Delta(PP) are the results of C(n)NO insertion into EYPC bilayers and depend on the hydrophobic mismatch between C(n)NO and EYPC hydrocarbon chains and on the lateral interactions of C(n)NO and EYPC in the bilayer.  相似文献   

16.
Oxidized cytochrome c oxidase exists in two reasonably well-defined conformations, a high-spin conformation with maximal absorption at 418 nm and a low-spin conformation with maximal absorption at 428 nm. The equilibrium between these two conformations has been studied as a function of pH, pressure, and temperature. pH effects the equilibrium between the two conformations, the maximum fraction of the 418-nm form being found at about pH 6.8. Increasing pressure displaced the equilibrium toward the 428-nm form; the molar volume changes found are independent of pH but strongly dependent on temperature. Increasing temperature over the range -20 to 25 degrees C displaces the equilibrium toward the 428-nm form; the van't Hoff plots that result show a discontinuity at about 10 degrees C. Above 10 degrees C, delta H is relatively constant as a function of pH; below 10 degrees C, delta H is strongly pH dependent. Delta G, delta H, delta S, and delta V have been evaluated for the equilibrium.  相似文献   

17.
The core of DNA polymerase III, the replicative polymerase in Escherichia coli, consists of three subunits (alpha, epsilon, and theta). The epsilon subunit is the 3'-5' proofreading exonuclease that associates with the polymerase (alpha) through its C-terminal region and theta through a 185-residue N-terminal domain (epsilon 186). A spectrophotometric assay for measurement of epsilon activity is described. Proteins epsilon and epsilon 186 and the epsilon 186.theta complex catalyzed the hydrolysis of the 5'-p-nitrophenyl ester of TMP (pNP-TMP) with similar values of k(cat) and K(M), confirming that the N-terminal domain of epsilon bears the exonuclease active site, and showing that association with theta has little direct effect on the chemistry occurring at the active site of epsilon. On the other hand, formation of the complex with theta stabilized epsilon 186 by approximately 14 degrees C against thermal inactivation. For epsilon 186, k(cat) = 293 min(-)(1) and K(M) = 1.08 mM at pH 8.00 and 25 degrees C, with a Mn(2+) concentration of 1 mM. Hydrolysis of pNP-TMP by epsilon 186 depended absolutely on divalent metal ions, and was inhibited by the product TMP. Dependencies on Mn(2+) and Mg(2+) concentrations were examined, giving a K(Mn) of 0.31 mM and a k(cat) of 334 min(-1) for Mn(2+) and a K(Mg) of 6.9 mM and a k(cat) of 19.9 min(-1) for Mg(2+). Inhibition by TMP was formally competitive [K(i) = 4.3 microM (with a Mn(2+) concentration of 1 mM)]. The pH dependence of pNP-TMP hydrolysis by epsilon 186, in the pH range of 6.5-9.0, was found to be simple. K(M) was essentially invariant between pH 6.5 and 8.5, while k(cat) depended on titration of a single group with a pK(a) of 7.7, approaching limiting values of 50 min(-1) at pH <6.5 and 400 min(-1) at pH >9.0. These data are used in conjunction with crystal structures of the complex of epsilon 186 with TMP and two Mn(II) ions bound at the active site to develop insights into the mechanisms of pNP-TMP hydrolysis by epsilon at high and low pH values.  相似文献   

18.
The binding of AMP to activator site N and to inhibitor site I in glycogen phosphorylase b has been characterized by calorimetry, potentiometry and ultracentrifugation in the pH range 6.5-7.5 at 25 degrees C (mu = 0.1). Calorimetric titration data of phosphorylase b with adenosine 5'-phosphoramidate are also reported at pH 6.9 (T = 25 degrees C, mu = 0.1). Calorimetric curves have been analyzed on the basis of potentiometric and sedimentation velocity results to determine thermodynamic quantities for AMP binding to the enzyme. The comparison of calorimetric titration data of AMP and adenosine 5'-phosphoramidate at pH 6.9 supports the hypothesis previously suggested that the dianionic phosphate form of the nucleotide preferentially binds to the allosteric activator site. The thermodynamic parameters for AMP binding to site N are as follows: delta G0 = -22 kJ mol-1, delta H0 = -34 kJ mol-1 and delta S0 = -40 J mol-1 K-1. The binding of the nucleotide to site I was found to be strongly dependent on the pH. This behaviour may be explained in terms of coupled protonations of three groups having pKa values of 6.0, 6.0 and 6.1 in the unbound form and 7.0, 7.5 and 7.2 in the enzyme-nucleotide complex. The thermodynamic parameters for nucleotide binding to site I for the enzymatic form in which all the modified groups are completely deprotonated or protonated have been calculated to be: delta G0 = -7.7 kJ mol-1, delta H0 = -28 kJ mol-1 and delta S0 = -68 J mol-1 K-1 and delta G0 = -28 kJ mol-1, delta H0H = -10 kJ mol-1 and delta S0H = 61 J mol-1 K-1, respectively. These results suggest that attractive dispersion forces are of primary significance for AMP binding to activator site N, although electrostatic interactions act as a stabilizing factor in the nucleotide binding. The protonation states of those residues of which the pKa values are modified by AMP binding to site I highly influence the thermodynamic parameters for the nucleotide binding to this site.  相似文献   

19.
A detailed analysis of the properties of cytochrome b(559) (Cyt b(559)) in photosystem II (PS II) preparations with different degrees of structural complexity is presented. It reveals that (i) D1-D2-Cyt b(559) complexes either in solubilized form or incorporated into liposomes contain only one type of Cyt b(559) with E(m) values of 60 +/- 5 and 100 +/- 10 mV, respectively, at pH 6.8; (ii) in oxygen-evolving solubilized PS II core complexes Cyt b(559) exists predominantly (>85%) as an LP form with an E(m,7) of 125 +/- 10 mV and a minor fraction with an E(m,7) of -150 +/- 15 mV; (iii) in oxygen-evolving PS II membrane fragments three different redox forms are discernible with E(m) values of 390 +/- 15 mV (HP form), 230 +/- 20 mV (IP form), and 105 +/- 25 mV (LP form) and relative amplitudes of 58, 24, and 18%, respectively, at pH 7.3; (iv) the E(m) values are almost pH-independent between pH 6 and 9.5 in all sample types except D1-D2-Cyt b(559) complexes incorporated into liposomes with a slope of -29 mV/pH unit, when the pH increases from 6 to 9.5 (IP and LP form in PS II membrane fragments possibly within a restricted range from pH 6.5 to 8); (v) at pH >8 the HP Cyt b(559) progressively converts to the IP form with increasing pH; (vi) the reduced-minus-oxidized optical difference spectra of Cyt b(559) are very similar in the lambda range of 360-700 nm for all types except for the HP form which exhibits pronounced differences in the Soret band; and (vii) PS II membrane fragments and core complexes are inferred to contain about two Cyt b(559) hemes per PS II. Possible implications of conformational changes near the heme group and spin state transitions of the iron are discussed.  相似文献   

20.
The proton motive force and its electrical and chemical components were determined in Clostridium acetobutylicum, grown in a phosphate-limited chemostat, using [14C]dimethyloxazolidinedione and [14C]benzoic acid as transmembrane pH gradient (delta pH) probes and [14C]triphenylmethylphosphonium as a membrane potential (delta psi) indicator. The cells maintained an internal-alkaline pH gradient of approximately 0.2 at pH 6.5 and 1.5 at pH 4.5. The delta pH was essentially constant between pH 6.5 and 5.5 but increased considerably at lower extracellular pH values down to 4.5. Hence, the intracellular pH fell from 6.7 to 6.0 as the external pH was lowered from 6.5 to 5.5 but did not decrease further when the external pH was decreased to 4.5. The transmembrane electrical potential decreased as the external pH decreased. At pH 6.5, delta psi was approximately -90 mV, whereas no negative delta psi was detectable at pH 4.5. The proton motive force was calculated to be -106 mV at pH 6.5 and -102 mV at pH 4.5. The ability to maintain a high internal pH at a low extracellular pH suggests that C. acetobutylicum has an efficient deacidification mechanism which expresses itself through the production of neutral solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号