首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The distribution of FMRFamide-like immunoreactivity in the metathoracic ganglion of the locust, Schistocerca gregaria, has been investigated in serial semithin transverse sections with the use of the peroxidase-antiperoxidase (PAP) technique. The topographical distribution of approximately 120 immunopositive neurons was established. Antiserum against bovine pancreatic polypeptide (BPP) stains the same ganglionic cells as FMRFamide-antiserum, yet this staining is largely blocked after preabsorption to FMRFamide. A comparison of these results with those from other studies suggests that there may be more than one type of endogenous RFamide-like peptide.  相似文献   

2.
Distribution of FMRFamide-like immunoreactivity was examined in the larval ventral nerve cord of the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera : Tortricidae). Indirect immunofluorescent methods revealed the existence of 3 groups of FLI neurons in each ganglion. The neurons are distributed in a bilaterally symmetrical fashion at the anterodorsal, midlateral and posteroventral regions of the ganglia. There are 4 FMRFamide-like immunoreactive fiber tracts on the dorsal surface of the ganglia to which the anterodorsal FLI neurons project ipsilaterally, while the midlateral pair projects both ipsi-, and contralaterally. The last abdominal ganglion (AG8) has 4 additional pairs of FLI neurons; and axons from some of these extend into the median abdominal nerve, which suggests some role for this neuropeptide in the control of posterior structures of the larva.  相似文献   

3.
1. Localization of FMRFamide-like immunoreactivity was examined in the ventral ganglion of the fly Sarcophaga bullata using the indirect immunofluorescent method. 2. There are six large cells in the thoracic ganglion which are highly immunoreactive at all stages of development. 3. During metamorphosis the thoracic FLI neurons shift their position from ventrolateral to mid-ventral position and their axons terminate and elaborate a highly immunoreactive dorsal neural sheath. 4. It is suggested that the dorsal neural sheath may function as a neurohaemal organ from which FMRFamide-like substances may be released into the haemolymph to act as neurohormones.  相似文献   

4.
The structure and organization of the nervous system has been documented for various helminth parasites. However, the neuroanatomy of the carcinogenic liver fluke, Opisthorchis viverrini has not been described. This study therefore investigated the organization of the nervous system of this fluke using cholinesterase activity, aminergic and peptidergic (FMRFamide-like peptides) immunostaining to tag major neural elements. The nervous system, as detected by acetylcholinesterase (AchE) reaction, was similar in newly excysted metacercariae, migrating juveniles and adult parasites. In these stages, there were three pairs (dorsal, ventral and lateral) of bilaterally symmetrical longitudinal nerve cords and two cerebral ganglia. The ventral nerve cords and the cerebral ganglia were well-developed and exhibited strong AchE reactivity, as well as aminergic and FMRFamide-like immunoreactivity. Numerous immunoreactive nerve cell bodies were observed around the inner surface of the ventral sucker. Fine FMRFamide-like peptides immunopositive nerve fiber was rarely observed. Overall, the organization of the nervous system of O. viverrini is similar to other trematodes.  相似文献   

5.
Summary Using an antiserum against the tetrapeptide FMRFamide, we have studied the distribution of FMRFamide-like substances in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. More than 2000 neurons per hemisphere exhibit FMRFamide-like immunoreactivity. Most of these cells reside within the optic lobe. Particular types of FMRFamide-immunoreactive neurons can be identified. Among these are neurosecretory cells, putatively centrifugal neurons of the optic lobe, local interneurons of the antennal lobe, mushroom-body Kenyon cells, and small-field neurons of the central complex. In the suboesophageal ganglion, groups of ventral midline neurons exhibit FMRFamide-like immunoreactivity. Some of these cells have axons in the maxillary nerves and apparently give rise to FMRFamide-immunoreactive terminals in the sheath of the suboesophageal ganglion and the maxillary nerves. In local interneurons of the antennal lobe and a particular group of protocerebral neurons, FMRFamide-like immunoreactivity is colocalized with GABA-like immunoreactivity. This suggests that FMRFamide-like peptides may be cotransmitters of these putatively GABAergic interneurons. All FMRFamide-immunoreactive neurons are, furthermore, immunoreactive with an antiserum against bovine pancreatic polypeptide, and the vast majority is also immunoreactive with an antibody against the molluscan small cardioactive peptide SCPB. Therefore, it is possible that more than one peptide is localized within many FMRFamide-immunoreactive neurons. The results suggest that FMRFamide-related peptides are widespread within the nervous system ofM. sexta and might function as neurohormones and neurotransmitters in a variety of neuronal cell types.Abbreviations AL antennal lobe - BPPLI bovine pancreatic polypeptide-like immunoreactivity - FLI FMRFamide-like immunoreactivity - GLI GABA-like immunoreactivity - NSC neurosecretory cell - SCP B LI small cardioactive peptideB-like immunoreactivity - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion  相似文献   

6.
FMRFamide immunoreactivity was detected in all regions of the Limulus nervous system, including the brain (6.5 +/- 0.6 pg FMRFamide/mg), cardiac ganglion (2.06 +/- 0.67 pg FMRFamide/mg), and ventral nerve cord (5.8 +/- 0.7 pg FMRFamide/mg). The distribution of immunoreactive FMRFamide (irFMRFamide) was mapped by immunofluorescence and the distribution corresponded to regional RIA data. A good proportion of the CNS and cardiac ganglion neuropile contained irFMRFamide, and fluorescent cell bodies were observed in several areas. High performance liquid chromatography (HPLC) was employed to separate and characterize the FMRFamide-like peptides from extracts of Limulus brains. HPLC fractions were analyzed using coincidental radioimmunoassay and bioassay (the radula protractor muscle of Busycon contrarium). There appear to be at least three FMRFamide-like peptides in the Limulus brain, including one similar to clam FMRFamide. FMRFamide acts on Limulus heart in a biphasic manner at relatively high concentrations (10(-5)M), but has no effect on the activity of the isolated ventral nerve cord. These data suggest that in Limulus FMRFamide-like peptides are acting as neurotransmitters, or neuromodulators.  相似文献   

7.
The influence of peripheral connectivity on the survival and differentiation of Phe-Met-Arg-Phe-amide-like immunoreactive (FLI) neurons in the ventral ganglion (VG) of the fly Sarcophaga bullata (Diptera: Sarcophagidae) was examined. Isolated larval VG were cultured in vivo for 13 days. The ganglia had undergone metamorphosis and resembled in situ metamorphosed VG in morphology and in the number and location of FLI neurons. The 3 pairs of large thoracic FLI neurons survived and became translocated to the midventral position extending immunoreactive axons into the dorsal neuropil. The 5 pairs of small FLI neurons also appeared de novo in the abdominal ganglion. However, the dorsal neural sheath of the cultured VG was devoid of FMRFamide-like immunoreactivity that was so characteristic of adult VG, which suggests the importance of peripheral connectivity for the metamorphic modification of FLI neurons.  相似文献   

8.
Ciliary and nerve structures were described in juvenile female Dinophilus gyrociliatus (O. Schmidt, 1848) after immunochemical staining with tubulin, serotonin, and FMRFamide antibodies. Anti-tubulin antibodies revealed the following external structures: two head and seven body ciliary bands, a ventral ciliary band, and head ciliary fields. Gut cilia and five pairs of protonephridia were detected inside the body. The nervous system consists of an oval headed neuropile with anterior and posterior nerves extending from it, seven longitudinal nerve cords, commissures, and circular nerves. Anti-serotonin antibodies revealed the head neuropile, neurons at the base of the ventral ciliary band, an oesophageal ring, and seven longitudinal ventral cords. Anti-FMRFamide antibodies revealed approximately ten neurons in the cerebral ganglion, five longitudinal cords, and the oesophageal and caudal-nerve rings. The presented data suggest the simplification of the nervous system structure in D. gyrociliatus, which probably reflects pedomorphosis.  相似文献   

9.
FMRFamide-like immunoreactivity was detected histochemically in the sea scallopPlacopecten magellanicus. Most immunoreactivity was concentrated in the cerebral, pedal, and parietovisceral ganglia, particularly in the cortical cell bodies and in their fibers which extend into the central neuropile. Whole-mount immunofluorescence studies were used to localize concentrations of immunoreactive cells on the dorsal and ventral surfaces of each ganglion. Immunoreactivity was also detected in nerves emanating from the ganglia. Strong immunoreactivity was localized in peripheral organs, including the gut and gills of juvenile and adult scallops. Weak immunoreactivity was detected in the gonads, heart, and adductor muscle of the adults. A broad FMRFamide-like immunoreactive band of 2.5–8.2 kDa was detected by Western blotting of acetone extracts of the parietovisceral ganglia. In the presence of protease inhibitors, two FMRFamide-like immunoreactive bands (7.2–8.2 kDa and >17 kDa) were obtained. Neither of these bands comigrated with the FMRFamide standard. It is concluded that peptides of the FMRFamide family are probably regulators of numerous central and peripheral functions inP. magellanicus.  相似文献   

10.
1. Distribution of FMRFamide-like peptide activity was examined in the stomatogastric nervous system of the adult fly, Sarcophaga bullata by the indirect immunofluorescent method.2. The neurons of the hypocerebral ganglion exhibit intense immunoreactivity and extend a thick axon bundle ventrally towards the proventriculus and crop.3. Near the mouth of the stomodeal valve a dense network of radial and circular immunoreactive processes branch off and innervate the proventriculus.4. Beyond the proventriculus, the crop duct and anterior midgut wall are also innervated by the FMRFamide-like immunoreactive processes of the nerve from the hypocerebral ganglion.5. From the pattern of innervation of the gut by FMRFamide-like immunoreactive processes it is suggested that this neuropeptide may regulate feeding activities in the adult fly.  相似文献   

11.
Summary Immunohistochemical studies were performed by use of specific rabbit antisera and purified antibodies to human Tg on cephalic and body sections of Eisenia foetida and on cephalic sections of Lumbricus terrestris. Secondary antisera, either fluorescein- or peroxidase-conjugated, were used to identify the immunoreaction. Immunoreactive perikarya and some immunoreactive nerve fibres were detected in both the cerebral ganglion and the ventral nerve cord of E. foetida. From 8 to 19 Tg-like positive neurons per frontal section were observed in the brain, mainly in the dorsal zone. From 2 to 4 positive perikarya per ganglion were found in sagittal sections of the ventral nerve cord with a repetitive distribution. Numerous positive neurons were also found in the cephalic segments of L. terrestris. The present results indicate that a substance immunologically related to mammalian Tg is synthesized in earthworms. This suggests that some conservative sequences of Tg structure arose very early in evolution and supports the idea of a common evolutionary origin for endocrine and nervous systems.  相似文献   

12.
Primary sensory trigeminal neurons supplying the dental pulp of incisors in guinea pigs were labelled by retrograde axonal transport. Using an autometallographic intensification procedure, 48 h after injection of wheat germ agglutinin/colloidal gold in the pulp, gold particles were detected in the cytoplasm of the neurons as black granulations. A morphometric study showed a bimodal repartition of the labelled neurons of the ganglion. By submitting ganglion slices to an anti-substance P immunserum revealed by immunocytochemistry, it could be observed that, among the neurons supplying the dental pulp of incisors, the majority of the largest were substance P immunopositive while the smallest were substance P immunonegative. These observations suggest that there could be at least two different populations of nerve fibres supplying the guinea pig incisor dental pulp. Substance P negative neurons could express different neurotransmitters.  相似文献   

13.
Hill SR  Orchard I 《Peptides》2003,24(10):1511-1524
The gut tissues and associated nervous system of the African migratory locust, Locusta migratoria, were found to contain FMRFamide-like immunoreactive (FLI) material throughout the five larval instars and 2 weeks into the adult stage in both males and females. FMRFamide-like immunoreactivity associated with the locust gut was described using camera lucida techniques. FMRFamide-like immunoreactivity is observed in the frontal connectives, recurrent nerve, and oesophageal nerves; projections from the ingluvial ganglion onto the anterior midgut, and from the proctodeal nerve onto the hindgut and posterior midgut; in the neuropils of the frontal ganglion, hypocerebral ganglion and ingluvial ganglia; 30 cell bodies in the frontal ganglion; multipolar sensory cells on the foregut; and endocrine-like cells in the gastric caecae and midgut. Radioimmunoassay (RIA) was used to determine the quantities of FLI material in foreguts, gastric caecae, anterior and posterior midguts, and hindgut of first-fifth instar larvae, 1-3- and 14-17-day male and female adult locusts. As expected, as the tissue size (assessed by total protein content) increases, so does the amount of FLI material in each tissue. Normalizing for tissue size reveals significant differences in FLI content among the stages for each tissue tested. Reversed phase-high pressure liquid chromatography (RP-HPLC) followed by RIA has identified four groups of FLI fractions present in the gut, and different members of these groups are present in the various gut tissues.  相似文献   

14.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides is characterized by a common C-terminal pentapeptide, FXPRLamide, which is required for diverse physiological functions in various insects. Polyclonal antisera against the C-terminus was utilized to determine the location of cell bodies and axons in the central nervous systems of larval and adult mosquitoes. Immunoreactive material was detected in three groups of neurons in the subesophageal ganglion of larvae and adults. The corpora cardiaca of both larvae and adults contained immunoreactivity indicating potential release into circulation. The adult and larval brains had at least one pair of immunoreactive neurons in the protocerebrum with the adult brain having additional immunoreactive neurons in the dorsal medial part of the protocerebrum. The ventral ganglia of both larvae and adults each contained one pair of neurons that sent their axons to a perisympathetic organ associated with each abdominal ganglion. These results indicate that the mosquito nervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph. The peptides in insects and mosquitoes are produced by two genes, capa and pk/pban. Utilizing PCR protocols, we demonstrate that products of the capa gene could be produced in the abdominal ventral ganglia and the products of the pk/pban gene could be produced in the subesophageal ganglion. Two receptors for pyrokinin peptides were differentially localized to various tissues.  相似文献   

15.
 With the use of the monoclonal antibody UA301, which specifically recognizes the nervous system in ascidian larvae, the neuronal connections of the peripheral and central nervous systems in the ascidian Ciona intestinalis were observed. Three types of peripheral nervous system neurons were found: two located in the larval trunk and the other in the larval tail. These neurons were epidermal and their axons extended to the central nervous system and connected with the visceral ganglion directly or indirectly. The most rostral system (rostral trunk epidermal neurons, RTEN) was distributed bilateral-symmetrically. In addition, presumptive papillar neurons in palps were found which might be related to the RTEN. Another neuron group (apical trunk epidermal neurons, ATEN) was located in the apical part of the trunk. The caudal peripheral nervous system (caudal epidermal neurons, CEN) was located at the dorsal and ventral midline of the caudal epidermis. In the larval central nervous system, two major axon bundles were observed: one was of a photoreceptor complex and the other was connected with RTEN. These axon bundles joined in the posterior sensory vesicle, ran posteriorly through the visceral ganglion and branched into two caudal nerves which ran along the lateral walls of the caudal nerve tube. In addition, some immunopositive cells existed in the most proximal part of the caudal nerve tube and may be motoneurons. Received: 8 September 1997 / Accepted: 14 December 1997  相似文献   

16.
17.
Summary Three antisera were used to study the distribution and anatomy of bovine pancreatic polypeptide (BPP)-like/FMRFamide-like immunoreactive neurones within the unfused abdominal ganglia of the migratory locust, Locusta migratoria. All the antisera used stained two or more clusters of perikarya, localized anteriorly and posteriorly near the midline within each unfused abdominal ganglion. Double labelling experiments with intracellular dye injection, or differential backfilling, combined with subsequent immunostaining were carried out to identify these neurones. Two of the antisera (antisera 1 and 2, both raised against FMRFamide) stained three groups of midline neurones, located anterior dorsal, anterior ventral and posterior dorsal within the ganglion. Neurones of the former of these two clusters projected via the anterior median nerve to a neurohaemal organ. The posterior cluster of midline cells comprised immunopositive perikarya all but one of which also projected via the anterior median nerve to innervate the neurohaemal organ. Double labelling with Lucifer yellow and antisera 1 and 2 showed that the remaining neurone was the previously identified doral unpaired median (DUM)heart1 neurone. The third antiserum (AK141), also raised against FMRFamide, stained neurones within an anterior dorsal cluster, and in a posterior cluster. Double labelling with differential Co2+/Ni2+-backfilling and the antiserum 3 (AK141) demonstrated that the large neurones of both clusters belonged to the population of bilaterally projecting neurones (BPNs), including the DUMheart1 neurone. Since the antisera cross-react with BPP and fail to label neurones when preadsorped with BPP or FMRFamide, we conclude that the labelled neurones contain polypeptides of the FMRFamide/BPP-family.  相似文献   

18.
Serotonin immunoreactivity of neurons in the gastropod Aplysia californica   总被引:2,自引:0,他引:2  
Serotonergic neurons and axons were mapped in the central ganglia of Aplysia californica using antiserotonin antibody on intact ganglia and on serial sections. Immunoreactive axons and processes were present in all ganglia and nerves, and distinct somata were detected in all ganglia except the buccal and pleural ganglia. The cells stained included known serotonergic neurons: the giant cerebral neurons and the RB cells of the abdominal ganglion. The area of the abdominal ganglion where interneurons are located which produce facilitation during the gill withdrawal reflex was carefully examined for antiserotonin immunoreactive neurons. None were found, but two bilaterally symmetric pairs of immunoreactive axons were identified which descend from the contralateral cerebral or pedal ganglion to abdominal ganglion. Because of the continuous proximity of this pair of axons, they could be recognized and traced into the abdominal ganglion neuropil in each preparation. If serotonin is a facilitating transmitter in the abdominal ganglion, these and other antiserotonin immunoreactive axons in the pleuroabdominal connectives may be implicated in this facilitation.  相似文献   

19.
Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s]-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunoreactive arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia. This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

20.
Summary The colocalization of the peptides neuropeptide Y (NPY) and Phe-Met-Arg-Phe-NH2 (FMRFamide) in the brain of the Atlantic salmon was investigated with double immunofluorescence labeling and peroxidase-antiperoxidase immunocytochemical techniques. Colocalization of NPY-like and FMRE amide-like immunoreactivities was observed in neuronal cell bodies and fibers in four brain regions: in the lateral and commissural nuclei of the area ventralis telencephali, in the nucleus ventromedialis thalami, in the laminar nucleus of the mesencephalic tegmentum, and in a group of small neurons situated among the large catecholaminergic neurons in the isthmal region of the brainstem. All cell bodies in these nuclei were immunoreactive to both NPY and FMRF. We consistently observed larger numbers of FMRF-immunoreactive than NPY-immunoreactive fibers. In the nucleus ventromedialis thalami NPY- and FMRFamide-like immunoreactivities were colocalized in cerebrospinal fluid (CSF)-contacting neurons. NPY-immunoreactive, but not FMRF-immunoreactive, neurons were found in the stratum periventriculare of the optic tectum, and at the ventral border of the nucleus habenularis (adjacent to the nucleus dorsolateralis thalami). Neurons belonging to the nucleus of the nervus terminalis were FMRF-immunoreactive but not NPY-immunoreactive. The differential labeling indicates, as do our cross-absorption experiments, that the NPY and FMRFamide antisera recognize different epitopes. Thus, it is probable that NPY-like and FMRFamide-like substances occur in the same neurons in some brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号