首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcium oscillations regulate several cellular processes by activating particular proteins. Most theoretical studies focused on the idealized situation of infinitely long oscillations. Here we analyze information transfer by time-limited calcium spike trains. We show that proteins can be selectively activated in a resonance-like manner by time-limited spike trains of different frequencies, while infinitely long oscillations do not show this resonance phenomenon. We found that proteins are activated more specifically by shorter oscillatory signals with narrower spikes.  相似文献   

2.
Endocrine cells, such as H295R have been widely used to study secretion of steroid and other hormones. Exocytosis-dependent hormone release is accompanied by an increase in plasma membrane surface area and a decrease in vesicle content. Recovery of vesicles and decrease in plasma membrane area is achieved by endocytotic processes. These changes in the extent of the surface area lead to morphological changes which can be determined by label-free real-time impedance measurements. Exo- and endocytosis have been described to be triggered by activation of L-type Ca2+ channels. The present study demonstrates that activation of L-type calcium channels induces prolonged oscillating changes in cellular impedance. The data support the hypothesis that a tight regulation of the intracellular Ca2+ concentration is a prerequisite for the observed cellular impedance oscillations. Furthermore evidence is presented for a mechanism in which the oscillations depend on a Ca2+-triggered calmodulin-dependent cascade involving myosin light chain kinase, nonmuscle myosin II and ultimately actin polymerization, a known determinant for cell shape changes and exocytosis in secretory cells. The described assay provides a method to determine continuously prolonged changes in cellular morphology such as exo/endocytosis cycles.  相似文献   

3.
Endocrine cells, such as H295R have been widely used to study secretion of steroid and other hormones. Exocytosis-dependent hormone release is accompanied by an increase in plasma membrane surface area and a decrease in vesicle content. Recovery of vesicles and decrease in plasma membrane area is achieved by endocytotic processes. These changes in the extent of the surface area lead to morphological changes which can be determined by label-free real-time impedance measurements. Exo- and endocytosis have been described to be triggered by activation of L-type Ca(2+) channels. The present study demonstrates that activation of L-type calcium channels induces prolonged oscillating changes in cellular impedance. The data support the hypothesis that a tight regulation of the intracellular Ca(2+) concentration is a prerequisite for the observed cellular impedance oscillations. Furthermore evidence is presented for a mechanism in which the oscillations depend on a Ca(2+)-triggered calmodulin-dependent cascade involving myosin light chain kinase, nonmuscle myosin II and ultimately actin polymerization, a known determinant for cell shape changes and exocytosis in secretory cells. The described assay provides a method to determine continuously prolonged changes in cellular morphology such as exo/endocytosis cycles. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

4.
Calcium ions (Ca2+) and nitric oxide (NO) are key signalling molecules that are implicated in the regulation of numerous cellular processes. Here we show that, in the intact liver, stimulation of endothelial cells by bradykinin coordinates the propagation of vasopressin-dependent intercellular Ca2+ waves across hepatic plates, and markedly increases the frequency of Ca2+ oscillations in individual hepatocytes. Modulation of Ca2+ oscillations by bradykinin is lost following isolation of hepatocytes, but restored in co-cultures of hepatocytes and endothelial cells. The sensitizing effects of bradykinin are mimicked by NO donors and abrogated by NO inhibitors. Thus, crosstalk between NO and Ca2+ signalling pathways through the microvasculature is probably an important mechanism for the coordination of liver function and may have a function in other organs.  相似文献   

5.
6.
In this paper theoretical and experimental evidence is presented which indicates that oscillations in internal calcium and cyclic AMP concentrations due to an instability in their common control loops are possible and indeed may be widespread. Further, it is demonstrated that fluctuations in various cellular properties, in particular membrane potential, are a direct consequence of these second messenger oscillations. Given the central importance of calcium and cyclic AMP to the regulation of metabolism, these oscillations would influence most metabolic processes especially rhythmic behaviour. We propose that these oscillations form the basis of several biological rhythms including, potential oscillations in cardiac pacemaker cells, neurones and insulin secreting β-cells, the minute rhythm in smooth muscle, cyclic AMP pulses in Dictyostelium, rhythmical cytoplasmic streaming in Physarum and transepitheliel potential oscillations in Calliphora salivary gland. This model makes possible an explanation of the frequency and amplitude effects of hormones.  相似文献   

7.
The skeletal elements of embryonic limb are prefigured by prechondrogenic condensation in which secreted molecules such as adhesion molecules and extracellular matrix have crucial roles. However, how the secreted molecules are controlled to organize the condensation remains unclear. In this study, we examined metabolic regulation of secretion in prechondrogenic condensation, using bioluminescent monitoring systems. We here report on ATP oscillations in the early step of chondrogenesis. The ATP oscillations depended on both glycolysis and mitochondrial respiration, and their synchronization among cells were achieved via gap junctions. In addition, the ATP oscillations were driven by Ca2+ oscillations and led to oscillatory secretion in chondrogenesis. Blockade of the ATP oscillations prevented cellular condensation. Furthermore, the degree of cellular condensation increased with the frequency of ATP oscillations. We conclude that ATP oscillations have a critical role in prechondrogenic condensation by inducing oscillatory secretion.  相似文献   

8.
9.
Oscillations in cell biology   总被引:3,自引:0,他引:3  
Oscillations play an important role in many dynamic cellular processes. They can emerge as the collective dynamic behavior of an ensemble of interacting components in the cell. Examples include oscillations in cytoskeletal structures such as the axonemes of cilia. Spontaneous oscillations of mechano-sensitive hair bundles have been shown to give frequency selectivity and amplification to mechano-sensation. In some bacteria, oscillations of Min proteins are important for division site selection. Genetic oscillators form the basis of circadian clocks. All these oscillations share many general features. Models and theoretical approaches are essential for an understanding of the principles underlying these dynamic cellular processes.  相似文献   

10.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the pacemaker that controls circadian rhythms of a variety of physiological functions. Data strongly indicate the majority of the SCN neurons express self-sustaining oscillations that can be detected as rhythms in the spontaneous firing of individual neurons. The period of single SCN neurons in a dissociated cell culture is dispersed in a wide range (from 20h to 28h in rats), but that of the locomotor rhythm is close to 24h, suggesting individual oscillators are coupled to generate an averaged circadian period in the nucleus. Electrical coupling via gap junctions, glial regulation, calcium spikes, ephaptic interactions, extracellular ion flux, and diffusible substances have been discussed as possible mechanisms that mediate the interneuronal rhythm synchrony. Recently, GABA (γ-aminobutyric acid), a major neurotransmitter in the SCN, was reported to regulate cellular communication and to synchronize rhythms through GABAA receptors. At present, subsequent intracellular processes that are able to reset the genetic loop of oscillations are unknown. There may be diverse mechanisms for integrating the multiple circadian oscillators in the SCN. This article reviews the knowledge about the various circadian oscillations intrinsic to the SCN, with particular focus on the intercellular signaling of coupled oscillators. (Chronobiology International, 18(3), 371-387, 2001)  相似文献   

11.
Cytosolic calcium plays a crucial role as a second messenger in cellular signalling. Various cell types, including hepatocytes, display Ca(2+)oscillations when stimulated by an extracellular signal. However, the biological relevance of this temporal organization remains unclear. In this paper, we investigate theoretically the effect of Ca(2+)oscillations on a particular example of cell regulation: the phosphorylation-dephosphorylation cycle controlling the activation of glycogen phosphorylase in hepatocytes. By modelling periodic sinusoidal variations in the intracellular Ca(2+)concentration, we show that Ca(2+)oscillations reduce the threshold for the activation of the enzyme. Furthermore, as the activation of a given enzyme depends on the kinetics of its phosphorylation-dephosphorylation cycle, specificity can be encoded by the oscillation frequency. Finally, using a model for signal-induced Ca(2+)oscillations based on Ca(2+)-induced Ca(2+)release, we show that realistic Ca(2+)oscillations can potentiate the response to a hormonal stimulation. These results indicate that Ca(2+)oscillations in hepatocytes could contribute to increase the efficiency and specificity of cellular signalling, as shown experimentally for gene expression in lymphocytes (Dolmetsch et al., 1998).  相似文献   

12.
13.
Short-term pH regulation in plants   总被引:6,自引:0,他引:6  
Cellular pH regulation consists of two features: (i) Long-term pH homeostasis, which ensures that all H+ or OH produced in excess is ultimately removed from the cell and which requires metabolic energy; (ii) short-term reactions of the cell(s) to sudden shifts in intracellular pH, in order to prevent acute disturbances of metabolism. Recent progress in measuring and understanding of mainly short-term cellular regulation is summarized, including cellular responses to pH loads that arise from different sources such as external pH, weak acids/bases, protonophores, metabolic inhibitors, H+/cotransport, light and phytohormones. Whereas the plasma membrane H+ pump and metabolic adjustments may serve both long- and short-term pH control, physico-chemical buffering and the translocation of H+ from and to cellular compartments render only time-limited capacity for the neutralization of pH loads and seem exhausted within minutes. In spite of the widespread opinion that, because of tight regulation, intracellular pH does not vary with time, there is good evidence for long-lasting pH changes in plant cells, i.e. after hormonal stimulation, light/dark changes or carboxylation during crassulacean acid metabolism (CAM). This emphasizes that cytoplasmic pH, besides being well regulated, is essential not only for the regulation of membrane transport but also as a cellular messenger.  相似文献   

14.
We measured temporal oscillations in thermodynamic variables such as temperature, heat flux, and cellular volume in suspensions of non-dividing yeast cells which exhibit temporal glycolytic oscillations. Oscillations in these variables have the same frequency as oscillations in the activity of intracellular metabolites, suggesting strong coupling between them. These results can be interpreted in light of a recently proposed theoretical formalism in which isentropic thermodynamic systems can display coupled oscillations in all extensive and intensive variables, reminiscent of adiabatic waves. This interpretation suggests that oscillations may be a consequence of the requirement of living cells for a constant low-entropy state while simultaneously performing biochemical transformations, i.e., remaining metabolically active. This hypothesis, which is in line with the view of the cellular interior as a highly structured and near equilibrium system where energy inputs can be low and sustain regular oscillatory regimes, calls into question the notion that metabolic processes are essentially dissipative.  相似文献   

15.
In biological signal transduction pathways intermediates are often oscillatory and need to be converted into smooth output signals at the end. We show by mathematical modelling that protein kinase cascades enable converting oscillatory signals into sharp stationary step-like outputs. The importance of this result is demonstrated for the switch-like protein activation by calcium oscillations, which is of biological importance for regulating different cellular processes. In addition, we found that protein kinase cascades cause memory effects in the protein activation, which might be of a physiological advantage since a smaller amount of calcium transported in the cell is required for an effective activation of cellular processes.  相似文献   

16.
The multiplicity of mechanisms involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle results in both intra- and intercellular heterogeneities in [Ca(2+)](i). Heterogeneity in [Ca(2+)](i) regulation is reflected by the presence of spontaneous, localized [Ca(2+)](i) transients (Ca(2+) sparks) representing Ca(2+) release through ryanodine receptor (RyR) channels. Ca(2+) sparks display variable spatial Ca(2+) distributions with every occurrence within and across cellular regions. Individual sparks are often grouped, and fusion of sparks produces large local elevations in [Ca(2+)](i) that occasionally trigger propagating [Ca(2+)](i) waves. Ca(2+) sparks may modulate membrane potential and thus smooth muscle contractility. Sparks may also be the target of other regulatory factors in smooth muscle. Agonists induce propagating [Ca(2+)](i) oscillations that originate from foci with high spark incidence and also represent Ca(2+) release through RyR channels. With increasing agonist concentration, the peak of regional [Ca(2+)](i) oscillations remains relatively constant, whereas both frequency and propagation velocity increase. In contrast, the global cellular response appears as a concentration-dependent increase in peak as well as mean cellular [Ca(2+)](i), representing a spatial and temporal integration of the oscillations. The significance of agonist-induced [Ca(2+)](i) oscillations lies in the establishment of a global [Ca(2+)](i) level for slower Ca(2+)-dependent physiological processes.  相似文献   

17.
Receptor-mediated increases in the concentration of intracellular free calcium ([Ca2+]i) are responsible for controlling a plethora of physiological processes including gene expression, secretion, contraction, proliferation, neural signalling, and learning. Increases in [Ca2+]i often occur as repetitive Ca2+ spikes or oscillations. Induced by electrical or receptor stimuli, these repetitive Ca2+ spikes increase their frequency with the amplitude of the receptor stimuli, a phenomenon that appears critical for the induction of selective cellular functions. Here we report the characterisation of RASAL, a Ras GTPase-activating protein that senses the frequency of repetitive Ca2+ spikes by undergoing synchronous oscillatory associations with the plasma membrane. Importantly, we show that only during periods of plasma membrane association does RASAL inactivate Ras signalling. Thus, RASAL senses the frequency of complex Ca2+ signals, decoding them through a regulation of the activation state of Ras. Our data provide a hitherto unrecognised link between complex Ca2+ signals and the regulation of Ras.  相似文献   

18.
Gene expression circuitries, which enable cells to detect precise levels within a morphogen concentration gradient, have a pivotal impact on biological processes such as embryonic pattern formation, paracrine and autocrine signalling, and cellular migration. We present the rational synthesis of a synthetic genetic circuit exhibiting band-pass detection characteristics. The components, involving multiply linked mammalian trans-activator and -repressor control systems, were selected and fine-tuned to enable the detection of ‘low-threshold’ morphogen (tetracycline) concentrations, in which target gene expression was triggered, and a ‘high-threshold’ concentration, in which expression was muted. In silico predictions and supporting experimental findings indicated that the key criterion for functional band-pass detection was the matching of componentry that enabled sufficient separation of the low and high threshold points. Using the circuitry together with a fluorescence-encoded target gene, mammalian cells were genetically engineered to be capable of forming a band-like pattern of differentiation in response to a tetracycline chemical gradient. Synthetic gene networks designed to emulate naturally occurring gene behaviours provide not only insight into biological processes, but may also foster progress in future tissue engineering, gene therapy and biosensing applications.  相似文献   

19.
20.
Previous studies have shown that glycolysis can oscillate periodically, driven by feedback loops in regulation of key glycolytic enzymes by free ADP and other metabolites. Here we show both theoretically and experimentally in cardiac myocytes that when the capacity of oxidative phosphorylation and the creatine kinase system to buffer the cellular ATP/ADP ratio is suppressed, glycolysis can cause large scale periodic oscillations in cellular ATP levels (0.02-0.067 Hz), monitored from glibenclamide-sensitive changes in action potential duration or intracellular free Mg2+. Action potential duration oscillations originate primarily from glycolysis, since they 1) occur in the presence of cyanide or rotenone, 2) are suppressed by iodoacetate, 3) are accompanied by at most very small mitochondrial membrane potential oscillations, and 4) exhibit an anti-phase relationship to NADH fluorescence. By uncoupling energy supply-demand balance, glycolytic oscillations may promote injury and electrophysiological heterogeneity during acute metabolic stresses, such as acute myocardial ischemia in which both oxidative phosphorylation and creatine kinase activity are inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号