首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《The Journal of cell biology》1983,96(5):1197-1207
Antibodies directed against membrane components of dog pancreas rough endoplasmic reticulum (A-RER) and rat liver Golgi apparatus (A-Golgi) (Louvard, D., H. Reggio, and G. Warren, 1982, J. Cell Biol. 92:92-107) have been applied to cultured rat prolactin (PRL) cells, either normal cells in primary cultures, or clonal GH3 cells. In normal PRL cells, the A-RER stained the membranes of the perinuclear cisternae as well as those of many parallel RER cisternae. The A-Golgi stained part of the Golgi membranes. In the stacks it stained the medial saccules and, with a decreasing intensity, the saccules of the trans side, as well as, in some cells, a linear cisterna in the center of the Golgi zone. It also stained the membrane of many small vesicles as well as that of lysosomelike structures in all cells. In contrast, it never stained the secretory granule membrane, except at the level of very few segregating granules on the trans face of the Golgi zone. In GH3 cells the A-RER stained the membrane of the perinuclear cisternae, as well as that of short discontinuous flat cisternae. The A-Golgi stained the same components of the Golgi zone as in normal PRL cells. In some cells of both types the A-Golgi also stained discontinuous patches on the plasma membrane and small vesicles fusing with the plasma membrane. Immunostaining of Golgi membranes revealed modifications of membrane flow in relation to either acute stimulation of PRL release by thyroliberin or inhibition of basal secretion by monensin.  相似文献   

2.
TRH stimulation of prolactin release from GH3 cells is dependent on Ca2+; however, whether TRH-induced influx of extracellular Ca2+ is required for stimulated secretion remains controversial. We studied prolactin release from cells incubated in medium containing 110 mM K+ and 2 mM EGTA which abolished the electrical and Ca2+ concentration gradients that usually promote Ca2+ influx. TRH caused prolactin release and 45Ca2+ efflux from cells incubated under these conditions. In static incubations, TRH stimulated prolactin secretion from 11.4 +/- 1.2 to 19 +/- 1.8 ng/ml in control incubations and from 3.2 +/- 0.6 to 6.2 +/- 0.8 ng/ml from cells incubated in medium with 120 mM K+ and 2 mM EGTA. We conclude that Ca2+ influx is not required for TRH stimulation of prolactin release from GH3 cells.  相似文献   

3.
K Cheng  W W Chan  R Arias  A Barreto  B Butler 《Life sciences》1992,51(25):1957-1967
In GH3 cells and other clonal rat pituitary tumor cells, TRH has been shown to mediate its effects on prolactin release via a rise of cytosolic Ca2+ and activation of protein kinase C. In this study, we examined the role of protein kinase C in TRH-stimulated prolactin release from female rat primary pituitary cell culture. Both TRH and PMA stimulated prolactin release in a dose-dependent manner. When present together at maximal concentrations, TRH and PMA produced an effect which was slightly less than additive. Pretreatment of rat pituitary cells with 10(-6) M PMA for 24 hrs completely down-regulated protein kinase C, since such PMA-pretreated cells did not release prolactin in response to a second dose of PMA. Interestingly, protein kinase C down-regulation had no effect on TRH-induced prolactin release from rat pituitary cells. In contrast, PMA-pretreated GH3 cells did not respond to a subsequent stimulation by either PMA or TRH. Pretreatment of rat pituitary cells with TRH (10(-7) M, 24 hrs) inhibited the subsequent response to TRH, but not PMA. Forskolin, an adenylate cyclase activator, stimulated prolactin release by itself and in a synergistic manner when incubated together with TRH or PMA. The synergistic effects of forskolin on prolactin release was greater in the presence of PMA than TRH. Down-regulation of protein kinase C by PMA pretreatment abolished the synergistic effect produced by PMA and forskolin but had no effect on those generated by TRH and forskolin. sn-1,2-Dioctanylglycerol (DOG) pretreatment attenuated the subsequent response to DOG and PMA but not TRH. The effect of TRH, but not PMA, on prolactin release required the presence of extracellular Ca2+. In conclusion, the mechanism by which TRH causes prolactin release from rat primary pituitary cells is different from that of GH3 cells; the former is a protein kinase C-independent process whereas the latter is at least partially dependent upon the activation of protein kinase C.  相似文献   

4.
Cyclo(Histidyl-Proline) is a metabolite of thyrotropin-releasing hormone. It has been suggested that this peptide plays a role in regulating prolactin secretion in GH cells. An investigation of the effect of cyclo(His-Pro) on GH cells indicated that it does not affect basal prolactin release or accumulation or the levels stimulated by TRH. cAMP levels in GH cells are elevated by TRH or VIP, but not influenced by cyclo(His-Pro). cGMP levels in GH cells are not affected by either TRH or cyclo(His-Pro). While there is specific binding of TRH to receptors in GH cells, no such receptors for cyclo(His-Pro) are detectable. It is suggested that GH cells are unresponsive to cyclo(His-Pro).  相似文献   

5.
The effect of the diglyceride lipase inhibitor RHC 80267 on the prolactin secretory process was examined in clonal anterior pituitary GH3 cells. This compound reduced basal prolactin secretion as well as secretion induced by TRH and phospholipase C but not that induced by phorbol myristate acetate. Although exogenous phospholipase C increased diglyceride, no increase in the products of diglyceride lipase was detected. Moreover, low doses of RHC 80267 were observed to effectively block potassium-stimulated 45calcium influx. It is unlikely that RHC 80267 inhibits prolactin release solely by inhibiting diglyceride lipase. These data suggest blockade of plasma membrane calcium channels as an alternate mechanism for the inhibitory actions of RHC 80267 on intact GH3 cells. These observations may have implications for RHC 80267 action in other cell types.  相似文献   

6.
The secretion of prolactin in cultured pituitary cells was studied in correlation with the cellular changes induced by stimulatory or inhibitory agents. The techniques used in this study were: radioimmunoassay, immunocytochemistry, scanning (SEM) as well as transmission (TEM) electron microscopy. Prolactin secretion was stimulated by 17 beta-estradiol (10 nM) as well as thyrotropin- releasing hormone (TRH) (3 nM) and inhibited by 2-Br-alpha-ergocryptine (CB-154) (1 muM). The total prolactin (release and cell content) increased between 2 and 8 d of estradiol treatment, indicating an increase of both synthesis and release of prolactin. This finding was in agreement with TEM observations because, in estradiol-treated prolactin cells, the Golgi saccules were distended and Golgi elements were increased, thus indicating increased synthetic activity of these cells. The addition of TRH over a 4-h period resulted in a significant degranulation of prolactin cells. In contrast, prolactin secretory granules became accumulated in the cells after CB-154 treatment for a period ranging from 4 to 24 h. In agreement, light microscope immunocytochemistry showed an increased reaction for prolactin after short-term (< 24 h) incubation with CB-154. Because prolactin cells represent approximately 70% of the glandular cell population as revealed by immunocytochemistry, it was then possible to observe the changes of cell surface by SEM. In most cells, estradiol and TRH led to an increase in the number and prominence of microvilli and blebs, whereas CB-154 treatment resulted in a slightly decreased number of microvilli and an increased occurrence of membrane foldings. This report thus provides morphological evidence for the stimulatory effects of estradiol and TRH, and the inhibitory effects of CB-154 on prolactin secretion in pituitary cells in primary culture. These data, moreover, show that acute changes in secretory activity of prolactin-secreting cells are accompanied by marked changes of their morphological characteristics.  相似文献   

7.
The aim of the study was to analyze 14 consecutive patients with active acromegaly who had not undergone any therapy, the dose response of growth hormone (GH) to thyrotropin-releasing hormone (TRH), the existence of reproducibility of such response as well as to rule out the possibility of spontaneous fluctuations of GH which would mimic this response. On several nonconsecutive days, we investigated the GH response to saline serum, 100, 200 (twice) and 400 micrograms of TRH administration. We also studied both basal serum prolactin, serum prolactin after TRH administration and thyrotropin values. Our results show an absence of GH response after saline serum infusion, whereas after TRH doses, 36.3 42.8 and 45.4% positive responses were obtained, respectively. All GH responders were concordant to the different doses administered. The mean of GH concentrations of the different doses at different times did not reach significant differences. The response to the administration of the same dose brought about a significative increase, although it was not identical. It demonstrated a progressive increase of the area under the response curve, as did the means of increments after each TRH administration, albeit without reaching statistical significance. Between the GH-responding and GH-nonresponding groups there were no differences in either basal serum prolactin or serum prolactin and thyroid-stimulating hormone levels after TRH stimulation. The present study clearly shows that TRH elicits serum GH release from GH-secreting pituitary tumors. The response was reproducible in qualitative terms rather than quantitative, and no dose-response relationship was found between the TRH concentrations and the amounts of GH secreted.  相似文献   

8.
Rat prothyrotropin-releasing hormone (pro-TRH) is endoproteolyzed within the regulated secretory pathway of neuroendocrine cells yielding five TRH peptides and seven to nine other unique peptides. Endoproteolysis is performed by two prohormone convertases, PC1 and PC2. Proteolysis of pro-TRH begins in the trans-Golgi network and forms two intermediates that are then differentially processed as they exit the Golgi and are packaged into immature secretory granules. We hypothesized that this initial endoproteolysis may be necessary for downstream sorting of pro-TRH-derived peptides as it occurs before Golgi exit and thus entry into the regulated secretory pathway. We now report that when pro-TRH is transiently expressed in GH4C1 cells, a neuroendocrine cell line lacking PC1, under pulse-chase conditions release is constitutive and composed of more immature processing intermediates. This is also observed by radioimmunoassay under steady-state conditions. When a mutant form of pro-TRH, which has the dibasic sites of initial processing mutated to glycines, is expressed in AtT20 cells, a neuroendocrine cell line endogenously expressing PC1, both steady-state and pulse-chase experiments revealed that peptides derived from this mutant precursor are secreted in a constitutive fashion. A constitutively secreted form of PC1 does not target pro-TRH peptides to the constitutive secretory pathway but results in sorting to the regulated secretory pathway. These results indicated that initial processing action of PC1 on pro-TRH in the trans-Golgi network, and not a cargo-receptor relationship, is important for the downstream sorting events that result in storage of pro-TRH-derived peptides in mature secretory granules.  相似文献   

9.
Thyrotropin-releasing hormone stimulation of prolactin secretion from rat pituitary (GH3) cells is biphasic with a secretory burst (0-2 min) at a higher rate, followed by sustained secretion (beyond 2 min) at a lower rate. Based on the effects of calcium ionophores, K+ depolarization, and diacylglycerol (or phorbol esters), it was suggested that the secretory burst is dependent on elevation of cytoplasmic free calcium concentration [( Ca2+]i) whereas sustained secretion is mediated by lipid-activated protein phosphorylation. In this study, we pretreated GH3 cells with 0.03 mM arachidonic acid to abolish thyrotropin-releasing hormone-induced elevation of [Ca2+]i (Kolesnick, R. N., and Gershengorn, M. C. (1985) J. Biol. Chem. 260, 707-713). In control cells, basal secretion was 0.7 +/- 0.2 ng/10(6) cells/min which increased to 8.3 +/- 0.8 between 0 and 2 min after TRH and remained elevated at 3.3 +/- 0.2 between 2-10 min. In cells pretreated with arachidonic acid, TRH stimulated prolactin secretion to only 2.6 +/- 0.3 ng/10(6) cells/min between 0 and 2 min and to 3.2 +/- 0.2 between 2 to 10 min; these values are not different from each other nor from the response between 2 and 10 min in control cells. K+ depolarization, which elevates [Ca2+]i even in arachidonic acid-pretreated cells but does not affect lipid metabolism, caused only a secretory burst. Bovine serum albumin, which binds free arachidonic acid and reverses arachidonic acid inhibition of TRH-induced elevation of [Ca2+]i, reversed the inhibition of the secretory burst stimulated by TRH. These studies present direct evidence that the burst of prolactin secretion stimulated by TRH is dependent on an elevation of [Ca2+]i whereas the sustained phase of secretion is independent of such elevation.  相似文献   

10.
    
Summary The effect of monensin on the Golgi complex, formation of secretory granules and basal -endorphin secretion in cultured melanotrophs from the rat pituitary was studied. Earlier studies on the effect of monensin on regulated secretion have generally showed only minor effects on secretory granules. The initial (within 5 min) effect of monensin on the melanotroph was the appearance of large vacuoles at the trans-side of the thiamine pyrophosphatase-positive trans-most Golgi cisternae. This was associated with a dose-dependent inhibition of the condensation of electron-dense secretory products. After 1 h of treatment with 1 M monensin the Golgi stack was completely vacuolized. At the same time mature secretory granules were enlarged to severalfold their original size, and after 4h of treatment secretory granules were no longer observed. Despite the marked effects on granule formation and mature secretory granules monensin did not affect the basal release of -endorphin-immunoreactive material during continued incubation for up to 4h, indicating that basal peptide secretion can bypass the monensin block.  相似文献   

11.
The effect of muscimol, a specific potent GABAA receptor agonist, on prolactin release from human prolactin-secreting tissue was investigated using a perifusion system. Perifusion studies on normal rat anterior pituitary tissue, which has identical GABA receptors to those found in normal human pituitary glands, show that muscimol has a specific biphasic effect on prolactin release. This is characterized by an initial transient stimulation (222.3 +/- 21.6% of basal) lasting for 5-10 min followed by a more prolonged inhibitory phase (63.9 +/- 3.1% inhibition of basal). Five human prolactin-secreting adenomas were studied, and in none of the tumours could a biphasic response be demonstrated. One of the prolactin-secreting adenomas had a blunted inhibitory response, but the other 4 showed no inhibitory effect of muscimol on prolactin release. Muscimol had no significant effect on basal or thyrotropin-releasing-hormone (TRH)-stimulated prolactin secretion from GH3 rat pituitary tumour cells. These studies suggest that the GABAergic effect on prolactin secretion is absent or altered in both rat and human prolactin-secreting tumour cells.  相似文献   

12.
Using the acetoxymethyl ester of "Quin 2," a fluorescent Ca2+-indicator, we have loaded prolactin (PRL)-producing rat pituitary cells with non-toxic concentrations of Quin 2 and quantitated changes in cytosolic free calcium concentration ( [Ca2+]i) during stimulation of PRL release by thyrotropin-releasing hormone (TRH) and 40 mM K+. TRH induced a biphasic response, with an immediate (less than 1 s) spike in [Ca2+]i from basal levels (350 +/- 80 nM) to a peak of 1-3 microM, which decayed rapidly (t 1/2 = 8 s) to a near basal nadir, then rising to a plateau in [Ca2+]i of 500-800 nM. The TRH-induced spike phase was attenuated but not abolished by prior addition of EGTA, while the plateau phase was eliminated by EGTA. Addition of 40 mM K+ caused an immediate spike in [Ca2+]i to 1-3 microM which equilibrated slowly (t 1/2 = 1 min) directly to a plateau of 600-800 nM. The K+-induced spike and plateau phases were both abolished by prior addition of EGTA. The biphasic nature of TRH action on [Ca2+]i parallels the biphasic actions of TRH on 45Ca2+ fluxes and the biphasic release of PRL by GH cells in suspension. These findings provide evidence that Ca2+-dependent agonist-mediated increases in [Ca2+]i and hormone release are linked, and may generally have two modes: an acute "spike" mode, dependent primarily on redistribution of intracellular Ca2+ stores; and a sustained "plateau" mode, dependent on influx of extracellular Ca2+.  相似文献   

13.
In mammalian cells, activation of a Golgi-associated phospholipase D by ADP-ribosylation factor results in the hydrolysis of phosphatidylcholine to form phosphatidic acid (PA). This reaction stimulates the release of nascent secretory vesicles from the trans-Golgi network of endocrine cells. To understand the role of PA in mediating secretion, we have exploited the transphosphatidylation activity of phospholipase D. Rat anterior pituitary GH3 cells, which secrete growth hormone and prolactin, were treated with 1-butanol resulting in the synthesis of phosphatidylbutanol rather than PA. Under these conditions transport from the ER through the Golgi apparatus and secretion of polypeptide hormones were inhibited quantitatively. Furthermore, the in vitro synthesis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) by Golgi membranes was inhibited quantitatively. Most significantly, in the presence of 1-butanol the architecture of the Golgi apparatus was disrupted, resulting in its disassembly and fragmentation. Removal of the alcohol resulted in the rapid restoration of Golgi structure and secretion of growth hormone and prolactin. Our results suggest that PA stimulation of PtdIns(4,5)P(2) synthesis is required for maintaining the structural integrity and function of the Golgi apparatus.  相似文献   

14.
The vesicular integral membrane protein VIP36 belongs to the family of animal lectins and may act as a cargo receptor trafficking certain glycoproteins in the secretory pathway. Immunoelectron microscopy of GH3 cells provided evidence that endogenous VIP36 is localized mainly in 70-100-nm-diameter uncoated transport vesicles between the exit site on the ER and the neighboring cis-Golgi cisterna. The thyrotrophin-releasing hormone (TRH) stimulation and treatment with actin filament-perturbing agents, cytochalasin D or B or latrunculin-B, caused marked aggregation of the VIP36-positive vesicles and the appearance of a VIP36-positive clustering structure located near the cis-Golgi cisterna. The size of this structure, which comprised conspicuous clusters of VIP36, depended on the TRH concentration. Confocal laser scanning microscopy confirmed the electron microscopically demonstrated distribution and redistribution of VIP36 in these cells. Furthermore, VIP36 colocalized with filamentous actin in the paranuclear Golgi area and its vicinity. This is the first study to show the ultrastructural distribution of VIP36 in the early secretory pathway in GH3 cells. It suggests that actin filaments are involved in glycoprotein transport between the ER and cis-Golgi cisterna by using the lectin VIP36.  相似文献   

15.
We examined the possible involvement of mitogen-activated protein (MAP) kinase activation in the secretory process and gene expression of prolactin and growth hormone. Thyrotropin-releasing hormone (TRH) rapidly stimulated the secretion of both prolactin and growth hormone from GH3 cells. Secretion induced by TRH was not inhibited by 50 microM PD098059, but was completely inhibited by 1 microM wortmannin and 10 microM KN93, suggesting that MAP kinase does not mediate the secretory process. Stimulation of GH3 cells with TRH significantly increased the mRNA level of prolactin, whereas expression of growth hormone mRNA was largely attenuated. The increase in prolactin mRNA stimulated by TRH was inhibited by addition of PD098059, and the decrease in growth hormone mRNA was also inhibited by PD098059. Transfection of the cells with a pFC-MEKK vector (a constitutively active MAP kinase kinase kinase), significantly increased the synthesis of prolactin and decreased the synthesis of growth hormone. These data taken together indicate that MAP kinase mediates TRH-induced regulation of prolactin and growth hormone gene expression. Reporter gene assays showed that prolactin promoter activity was increased by TRH and was completely inhibited by addition of PD098059, but that the promoter activity of growth hormone was unchanged by TRH. These results suggest that TRH stimulates both prolactin and growth hormone secretion, but that the gene expressions of prolactin and growth hormone are differentially regulated by TRH and are mediated by different mechanisms.  相似文献   

16.
We report that the rat pituitary cell line GH3 contains a Ca2(+)- and calmodulin-dependent protein kinase with properties characteristic of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) from rat brain. The GH3 kinase exhibits the hallmark of authentic CaM kinase: conversion from Ca2(+)-dependent to Ca2(+)-independent activity following a brief initial phosphorylation in vitro. This phosphorylation occurs at a site which is similar or identical to that of the "autonomy" site of the rat brain enzyme and thus may be an autophosphorylation event. GH3 CaM kinase is phosphorylated and becomes Ca2(+)-independent in situ. Depolarization of intact cells with K+ opens calcium channels and leads to the phosphorylation of CaM kinase at the autonomy site, and the kinase becomes significantly and persistently Ca2(+)-independent. Treatment of cells with thyrotropin-releasing hormone (TRH), which activates the phosphatidylinositol signaling pathway, also generates a Ca2(+)-independent CaM kinase in situ. The primary effect of TRH on CaM kinase activity is transient and correlates with the spike of Ca2+ released from intracellular stores and the rapid phase of prolactin release from GH3 cells. This study demonstrates that CaM kinase is able to detect and respond to both calcium that enters the cell through voltage-sensitive Ca2+ channels and calcium released from internal stores via the phosphatidylinositol pathway. We find that TRH, a hormone that causes release of prolactin and was previously believed to activate primarily protein kinase C, also significantly activates CaM kinase in intact cells.  相似文献   

17.
Numerous studies have shown that prolactin (PRL) production by GH3 cells grown in serum supplemented media is regulated by several hormones including thyroliberin (TRH). The recent availability of hormonally defined, serum-free media for the growth of GH3 cells has made it possible to determine the effect of TRH in absence of other prolactin regulating hormones. Here we demonstrate that transfer of GH3/B6 cells from serum-supplemented medium to serum-free media results in several important changes: (1) altered growth response to TRH, (2) altered cell attachment and morphology, (3) greatly reduced prolactin production, and (4) greater stimulation of prolactin production by TRH. After 4 days in serum-free medium, TRH stimulates prolactin production by as much as 5-fold instead of approximately 2-fold in serum-supplemented medium. Furthermore, this increased responsiveness to TRH in serum-free medium is accompanied by a 10-fold decrease in the ED50 for TRH (concentration needed for half-maximal response) and paradoxically by a 2-fold reduction in the number of high-affinity TRH binding sites without significant change of their association constant.  相似文献   

18.
The effects of pertussis toxin on the responses of rat pituitary-tumour (GH) cells to thyrotropin-releasing hormone (thyroliberin, TRH) were examined. Treatment of cells with pertussis toxin did not alter the affinity or concentration of TRH receptors, or the sensitivity of the TRH receptor to inhibition by guanine nucleotides. TRH caused an increase in low-Km GTPase activity in membrane-containing fractions from both control and pertussis-toxin-treated cells. TRH stimulation of inositol phosphate formation was insensitive to pertussis toxin. TRH caused a biphasic increase in the concentrations of cytosolic free Ca2+ as monitored by intracellularly trapped Quin 2, and this increase was the same in control and toxin-treated cultures. The toxin did not alter the increase in prolactin and growth-hormone (somatotropin) release stimulated by TRH or shift the TRH dose-response curve, and it did not affect the TRH-induced rise in prolactin synthesis measured over 24 h. However, pertussis toxin did block the ability of somatostatin and muscarinic agonists to inhibit prolactin and growth-hormone secretion stimulated by vasoactive intestinal peptide when analysed under the same conditions as those in which the TRH system was unaffected. These data indicate that the guanine nucleotide effects on TRH binding and activity are not mediated by Ni, but possibly by another member of the family of guanine-nucleotide-dependent regulatory proteins.  相似文献   

19.
Thyrotropin-releasing hormone (TRH) stimulates the prolactin (PRL) release from normal lactotrophs or tumoral cell line GH3. This effect is not observed in many patients with PRL-secreting tumors. We examined in vitro the PRL response to TRH on cultured human PRL-secreting tumor cells (n = 10) maintained on an extracellular matrix in a minimum medium (DME + insulin, transferrin, selenium). Addition of 10(-8) M TRH to 4 X 10(4) cells produced either no stimulation of PRL release (n = 6) or a mild PRL rise of 32 +/- (SE) 11% (n = 4) when measured 1, 2 and 24 h after TRH addition. When tumor cells were preincubated for 24 h with 5 X 10(-11) M bromocriptine, a 47 +/- 4% inhibition of PRL release was obtained. When TRH (10(-8) M) was added, 24 h after bromocriptine, it produced a 85 +/- 25% increase of PRL release (n = 8). This stimulation of PRL release was evident when measured 1 h after TRH addition and persisted for 48 h. The half maximal stimulatory effect of TRH was 2 X 10(-10) M and the maximal effect was achieved at 10(-9) M TRH. When tumor cells were pretreated with various concentrations of triiodothyronine (T3), the PRL release was inhibited by 50% with 5 X 10(-11) M T3 and by 80% with 10(-9) M T3. Successive addition of TRH (10(-8) M) was unable to stimulate PRL release at any concentration of T3. The addition of 10(-8) M estradiol for up to 16 days either stimulated or had no effect upon the PRL basal release according to the cases. In all cases tested (n = 4), preincubation of the tumor cells with estradiol (10(-8) M) modified the inhibition of PRL release induced by bromocriptine with a half-inhibitory concentration displaced from 3 X 10(-11) M (control) to 3 X 10(-10) M (estradiol). These data demonstrate that the absence of TRH effect observed in some human prolactinomas is not linked to the absence of TRH receptor in such tumor cells. TRH responsiveness is always restored in the presence of dopamine (DA) at appropriate concentration. This TRH/DA interaction seems specific while not observed under T3 inhibition of PRL. Furthermore, estrogens, while presenting a variable stimulatory effect upon basal PRL, antagonize the dopaminergic inhibition of PRL release.  相似文献   

20.
We studied the possible involvement of diacylglycerol lipase in the regulatory mechanisms governing the release of prolactin by primary cultures of anterior pituitary cells. This was accomplished by studying the effect of a selective inhibitor of diacylglycerol lipase activity, RHC 80267, on basal prolactin release and that stimulated by TRH and elevated potassium concentrations. RHC 80267 produced a concentration-dependent reduction in basal prolactin release and abolished its increase produced by TRH and potassium. These results are consistent with the hypothesis that the production of arachidonate from lipids via the diacylglycerol lipase pathway is an important event in the governance of prolactin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号