首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron microscopic observations revealed that the tissues of poplar (Populus deltoides Bartr. ex Marsh) apical bud cells, which were fixed by a modified procedure of potassium permanganate fixative, showed a distinct endomembrane organization, in particular, the structural associations of the endoplasmic reticulum (ER) with other membrane systems. The striking findings are that some ER elements were in connection with the nuclear envelopes of two adjacent cells through plasmodesmata, and many ER elements were also associated with mitochondria, plastids, Golgi bodies or the plasma membrane (PM), forming a bridge-like continuum among various endomembrane systems or between nucleus to nucleus. A great number of plasmodesmata existed between cells, indicating a perfectly integrated symplasmic structure in poplar apical bud meristem grown in a long day environment. During the short day-induced dormancy, ER contracted, leading to its disassociation between nuclei, and between the nucleus and organelles/plasmalemma in many cells. After dormancy broke and shoots growth resumed, contracted ER was no longer observed in the apical bud cells. The ER associations with other endomembrane systems and the intercellular communication channels were re-established similar to that of plants before dormancy induction. These observations suggest that ER may play an important role in linking-up between the nucleus and organelles, and between the nucleus and the nucleus (or cell-to-cell), and seemingly coordinating various physiological processes by the bridging-like associations. And the contraction of ER under short-day may result in the growth cessation and the development of dormancy in poplar.  相似文献   

2.
Short-term pulse-chase studies using radioactive L-proline on carrot tissue support the classical endomembrane route for secretory proteins. Labelled hydroxyproline residues were first detectable in fractions containing the endoplasmic reticulum (ER) after a 5 min pulse. Upon chase-out this fraction looses and, initially, the Golgi apparatus (GA) fraction gains radioactivity. Unlike ER and GA fractions which show chase-out characteristics a plasma membrane (PM) containing-fraction reveals retention of some of the radioactivity.  相似文献   

3.
杨树(Populus deltoides Bartr.ex Marsh)顶芽分生组织细胞经一种改良的高锰酸钾固定法固定后,显示出一种十分清晰的内膜结构,尤其展现了内质网与其他膜系统存在一种结构上的密切联系。一些与核膜相连接的内质网伸展到细胞质中与线粒体、质体及高尔基体发生联系,可延伸到质膜。还有些内质网的一端与一个细胞的核膜相连结,其另一端穿过胞间连丝与邻近的另一个细胞的核膜相连结,在两个相邻的细  相似文献   

4.
The endoplasmic reticulum (ER) is the port of entry of proteins into the endomembrane system, and it is also involved in lipid biosynthesis and storage. This organelle contains a number of soluble and membrane-associated enzymes and molecular chaperones, which assist the folding and maturation of proteins and the deposition of lipid storage compounds. The regulation of translocation of proteins into the ER and their subsequent maturation within the organelle have been studied in detail in mammalian and yeast cells, and more recently also in plants. These studies showed that in general the functions of the ER in protein synthesis and maturation have been highly conserved between the different organisms. Yet, the ER of plants possesses some additional functions not found in mammalian and yeast cells. This compartment is involved in cell to cell communication via the plasmodesmata, and, in specialized cells, it serves as a storage site for proteins. The plant ER is also equipped with enzymes and structural proteins which are involved in the process of oil body biogenesis and lipid storage. In this review we discuss the components of the plant ER and their function in protein maturation and biogenesis of oil bodies. Due to the large number of cited papers, we were not able to cite all individual references and in many cases we refer the readers to reviews and references therein. We apologize to the authors whose references are not cited.  相似文献   

5.
Comprehensive analyses of proteins from cells and tissues are the most effective means of elucidating the expression patterns of individual disease-related proteins. On the other hand, the simultaneous separation and characterization of proteins by 1-DE or 2-DE followed by MS analysis are one of the fundamental approaches to proteomic analysis. However, these analyses do not permit the complete structural identification of glycans in glycoproteins or their structural characterization. Over half of all known proteins are glycosylated and glycan analyses of glycoproteins are requisite for fundamental proteomics studies. The analysis of glycan structural alterations in glycoproteins is becoming increasingly important in terms of biomarkers, quality control of glycoprotein drugs, and the development of new drugs. However, usual approach such as proteoglycomics, glycoproteomics and glycomics which characterizes and/or identifies sugar chains, provides some structural information, but it does not provide any information of functionality of sugar chains. Therefore, in order to elucidate the function of glycans, functional glycomics which identifies the target glycoproteins and characterizes functional roles of sugar chains represents a promising approach. In this review, we show examples of functional glycomics technique using alpha 1,6 fucosyltransferase gene (Fut8) in order to identify the target glycoprotein(s). This approach is based on glycan profiling by CE/MS and LC/MS followed by proteomic approaches, including 2-DE/1-DE and lectin blot techniques and identification of functional changes of sugar chains.  相似文献   

6.
Infection by Grapevine fanleaf nepovirus (GFLV), a bipartite RNA virus of positive polarity belonging to the Comoviridae family, causes extensive cytopathic modifications of the host endomembrane system that eventually culminate in the formation of a perinuclear "viral compartment." We identified by immunoconfocal microscopy this compartment as the site of virus replication since it contained the RNA1-encoded proteins necessary for replication, newly synthesized viral RNA, and double-stranded replicative forms. In addition, by using transgenic T-BY2 protoplasts expressing green fluorescent protein in the endoplasmic reticulum (ER) or in the Golgi apparatus (GA), we could directly show that GFLV replication induced a depletion of the cortical ER, together with a condensation and redistribution of ER-derived membranes, to generate the viral compartment. Brefeldin A, a drug known to inhibit vesicle trafficking between the GA and the ER, was found to inhibit GFLV replication. Cerulenin, a drug inhibiting de novo synthesis of phospholipids, also inhibited GFLV replication. These observations imply that GFLV replication depends both on ER-derived membrane recruitment and on de novo lipid synthesis. In contrast to proteins involved in viral replication, the 2B movement protein and, to a lesser extent, the 2C coat protein were not confined to the viral compartment but were transported toward the cell periphery, a finding consistent with their role in cell-to-cell movement of virus particles.  相似文献   

7.
Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.  相似文献   

8.
Three related gene families of low-molecular-weight (LMW) heat shock proteins (HSPs) have been characterized in plants. We describe a fourth LMW HSP family, represented by PsHSP22.7 from Pisum sativum and GmHSP22.0 from Glycine max, and demonstrate that this family of proteins is endomembrane localized. PsHSP22.7 and GmHSP22.0 are 76.7% identical at the amino acid level. Both proteins have amino-terminal signal peptides and carboxyl-terminal sequences characteristic of endoplasmic reticulum (ER) retention signals. The two proteins closely resemble class I cytoplasmic LMW HSPs, suggesting that they evolved from the cytoplasmic proteins through the addition of the signal peptide and ER retention motif. The endomembrane localization of these proteins was confirmed by cell fractionation. The polypeptide product of PsHSP22.7 mRNA was processed to a smaller-M(r) form by canine pancreatic microsomes; in vivo, GmHSP22.0 polysomal mRNA was found to be predominantly membrane bound. In vitro-processed PsHSP22.7 corresponded in mass and pI to one of two proteins detected in ER fractions from heat-stressed plants by using anti-PsHSP22.7 antibodies. Like other LMW HSPs, PsHSP22.7 was observed in higher-molecular-weight structures with apparent masses of between 80 and 240 kDa. The results reported here indicate that members of this new class of LMW HSPs are most likely resident ER proteins and may be similar in function to related LMW HSPs in the cytoplasm. Along with the HSP90 and HSP70 classes of HSPs, this is the third category of HSPs localized to the ER.  相似文献   

9.
Recent studies have shown that newly synthesized proteins and glycoproteins are submitted to a quality control mechanism in the rough endoplasmic reticulum (ER). In this report we present two models: One model will illustrate a transient retention in rough ER leading to a further degradation of glycoproteins in the cytosol, (soluble alkaline phosphatase expressed in Man-P-Dol deficient CHO cells lines). The second model will illustrate a strict retention of glycoproteins in rough ER without degradation nor recycling through the Golgi (E1, E2 glycoproteins of Hepatitis C virus in stably transfected UHCV-11.4 cells and in infected Hep G2 cells).In both cases, oligomannoside structures are markers of these phenomena, either as free soluble released oligomannosides in the case of degradation, or as N-linked oligomannosides for strict retention in rough ER.  相似文献   

10.
In cytomegalovirus-infected cells, the rate of protein synthesis was detected as two peaks. One occurred during the early phase of infection, 0 to 36 h postinfection, and the other occurred during the late phase, after the initiation of viral DNA synthesis. Double-isotopic-label difference analysis demonstrated that host and viral proteins were synthesized simultaneously during both phases. In the early phase, approximately 70 to 90% of the total proteins synthesized were host proteins, whereas approximately 10 to 30% were viral, even at a multiplicity of infection of 20 PFU/cell. Virus-related proteins or glycoproteins were referred to as infected-cell specific (ICS). Two ICS glycoproteins (gp145 and 100) were clearly detectable and were synthesized preferentially in the early phase of infection. Their synthesis was concomitant with stimulation of the protein synthesis rate. In the late phase of infection, approximately 50 to 60% of the total protein synthesis was viral and approximately 40 to 50% was host. The ICS proteins and glycoproteins detected during the late phase of infection were viral structural proteins. Infectious virus was not detectable until 48 to 72 h postinfection. An inhibitor of viral DNA synthesis, phosphonoacetic acid, prevented the appearance of the late-phase ICS proteins and glycoproteins, but there was little or no effect on early ICS glycoprotein synthesis. Radiolabeled ICS proteins and glycoproteins were identified by their relative rates of synthesis, by their different electrophoretic mobilities compared with those of host proteins and host glycoproteins, and by their similar electrophoretic mobilities compared to those of proteins and glycoproteins associated with virions and dense bodies of cytomegalovirus. Structural viral antigens in the infected-cell extracts were removed by immunoprecipitation, using F(ab')(2) fragments of cytomegalovirus-specific antibodies, and identified as described above. The last two criteria were used to identify viral structural ICS proteins and glycoproteins. Although approximately 35 structural proteins were found to be associated with purified virions and dense bodies, the continued synthesis of host cell proteins complicated their identification in infected cells. Nevertheless, seven of the nine structural glycoproteins were identified as ICS glycoproteins.  相似文献   

11.
Assembly, target‐signaling and transport of tyrosinase gene family proteins at the initial stage of melanosome biogenesis are reviewed based on our own discoveries. Melanosome biogenesis involves four stages of maturation with distinct morphological and biochemical characteristics that reflect distinct processes of the biosynthesis of structural and enzymatic proteins, subsequent structural organization and melanin deposition occurring in these particular cellular compartments. The melanosomes share many common biological properties with the lysosomes. The stage I melanosomes appear to be linked to the late endosomes. Most of melanosomal proteins are glycoproteins that should be folded or assembled correctly in the ER through interaction with calnexin, a chaperone associated with melanogenesis. These melanosomal glycoproteins are then accumulated in the trans Golgi network (TGN) and transported to the melanosomal compartment. During the formation of transport vesicles, coat proteins assemble on the cytoplasmic face of TGN to select their cargos by interacting directly or indirectly with melanosomal glycoproteins to be transported. Adapter protein‐3 (AP‐3) is important for intracellular transport of tyrosinase gene family proteins from TGN to melanosomes. Tyrosinase gene family proteins possess a di‐leucine motif in their cytoplasmic tail, to which AP‐3 appears to bind. Thus, the initial cascade of melanosome biogenesis is regulated by several factors including: 1) glycosylation of tyrosinase gene family proteins and their correct folding and assembly within ER and Golgi, and 2) supply of specific signals necessary for intracellular transport of these glycoproteins by vesicles from Golgi to melanosomes.  相似文献   

12.
Assembly, target-signaling and transport of tyrosinase gene family proteins at the initial stage of melanosome biogenesis are reviewed based on our own discoveries. Melanosome biogenesis involves four stages of maturation with distinct morphological and biochemical characteristics that reflect distinct processes of the biosynthesis of structural and enzymatic proteins, subsequent structural organization and melanin deposition occurring in these particular cellular compartments. The melanosomes share many common biological properties with the lysosomes. The stage I melanosomes appear to be linked to the late endosomes. Most of melanosomal proteins are glycoproteins that should be folded or assembled correctly in the ER through interaction with calnexin, a chaperone associated with melanogenesis. These melanosomal glycoproteins are then accumulated in the trans Golgi network (TGN) and transported to the melanosomal compartment. During the formation of transport vesicles, coat proteins assemble on the cytoplasmic face of TGN to select their cargos by interacting directly or indirectly with melanosomal glycoproteins to be transported. Adapter protein-3 (AP-3) is important for intracellular transport of tyrosinase gene family proteins from TGN to melanosomes. Tyrosinase gene family proteins possess a di-leucine motif in their cytoplasmic tail, to which AP-3 appears to bind. Thus, the initial cascade of melanosome biogenesis is regulated by several factors including: 1) glycosylation of tyrosinase gene family proteins and their correct folding and assembly within ER and Golgi, and 2) supply of specific signals necessary for intracellular transport of these glycoproteins by vesicles from Golgi to melanosomes.  相似文献   

13.
Missense mutations in the proteolipid protein 1 (PLP1) gene cause a wide spectrum of hypomyelinating disorders, from mild spastic paraplegia type 2 to severe Pelizaeus-Merzbacher disease (PMD). Mutant PLP1 accumulates in the endoplasmic reticulum (ER) and induces ER stress. However, the link between the clinical severity of PMD and the cellular response induced by mutant PLP1 remains largely unknown. Accumulation of misfolded proteins in the ER generally leads to up-regulation of ER chaperones to alleviate ER stress. Here, we found that expression of the PLP1-A243V mutant, which causes severe disease, depletes some ER chaperones with a KDEL (Lys-Asp-Glu-Leu) motif, in HeLa cells, MO3.13 oligodendrocytic cells, and primary oligodendrocytes. The same PLP1 mutant also induces fragmentation of the Golgi apparatus (GA). These organelle changes are less prominent in cells with milder disease-associated PLP1 mutants. Similar changes are also observed in cells expressing another disease-causing gene that triggers ER stress, as well as in cells treated with brefeldin A, which induces ER stress and GA fragmentation by inhibiting GA to ER trafficking. We also found that mutant PLP1 disturbs localization of the KDEL receptor, which transports the chaperones with the KDEL motif from the GA to the ER. These data show that PLP1 mutants inhibit GA to ER trafficking, which reduces the supply of ER chaperones and induces GA fragmentation. We propose that depletion of ER chaperones and GA fragmentation induced by mutant misfolded proteins contribute to the pathogenesis of inherited ER stress-related diseases and affect the disease severity.  相似文献   

14.
The endoplasmic reticulum (ER) is the main harbor for newly synthesized proteins in eukaryotic cells. Through a continuous membrane network of sheets and tubules, the ER hosts secretory proteins, integral membrane proteins, and luminal proteins of the endomembrane system. These proteins are translated by ribosomes outside the ER and require subsequent integration into or translocation across the lipid bilayer of the ER. They are then modified post-translationally and folded in the ER. Some of these proteins are packaged into coat protein complex II–coated vesicles for export. Here, we review recent advances in understanding the mechanism of protein translocation and transmembrane domain insertion in the ER, summarize new insights into selective cargo packaging, and discuss the roles of ER morphological dynamics in these processes.  相似文献   

15.
植物表达分泌蛋白的运输及定位   总被引:1,自引:0,他引:1  
分泌途径主要由内膜系统构成,内质网和高尔基体对于分泌蛋白的运输及定位具有重要作用。分泌蛋白的运输包括顺行途径和逆行途径。蛋白质通过质流和受体介导的途径运输到小泡中。在植物中,分泌蛋白的运输主要通过小泡和相连的小管来完成。分子伴侣和质量控制不仅能优化新合成蛋白的折叠和组装,而且去除了有折叠缺陷的蛋白。分泌蛋白的定位需要特定的信号肽,而高尔基体固有蛋白以依赖跨膜长度的方式,沿着分泌途径的细胞器分布。本文对植物表达分泌蛋白的分泌途径及定位、相关的分子伴侣和质量控制进行了综述。  相似文献   

16.
The endoplasmic reticulum (ER) is the major site for folding and sorting of newly synthesized secretory cargo proteins. One central regulator of this process is the quality control machinery, which retains and ultimately disposes of misfolded secretory proteins before they can exit the ER. The ER quality control process is highly effective and mutations in cargo molecules are linked to a variety of diseases. In mammalian cells, a large number of secretory proteins, whether membrane bound or soluble, are asparagine (N)-glycosylated. Recent attention has focused on a sugar transferase, UDP-Glucose: glycoprotein glucosyl transferase (UGGT), which is now recognized as a constituent of the ER quality control machinery. UGGT is capable of sensing the folding state of glycoproteins and attaches a single glucose residue to the Man9GlcNAc2 glycan of incompletely folded or misfolded glycoproteins. This enables misfolded glycoproteins to rebind calnexin and reenter productive folding cycles. Prolonging the time of glucose addition on misfolded glycoproteins ultimately results in either the proper folding of the glycoprotein or its presentation to an ER associated degradation machinery.  相似文献   

17.
N-glycans play important roles during the folding and secretion of glycoproteins. Surprisingly, during the N-glycosylation of glycoproteins, considerable amounts of unconjugated polymannose-type oligosaccharides ('free OS') are generated. Although free oligosaccharides have no known function in mammalian cells, a sophisticated cellular machinery enables them to be cleared from the endoplasmic reticulum (ER) into the cytosol and then re-enter the endomembrane system at the level of the lysosome. One possible function of this pathway is to stop free OS from interfering with the carbohydrate-dependent aspects of glycoprotein folding and transport along the secretory pathway.  相似文献   

18.
Ibl V  Stoger E 《Protoplasma》2012,249(2):379-392
Seed storage proteins (SSPs) have been studied for more than 250 years because of their nutritional value and their impact on the use of grain in food processing. More recently, the use of seeds for the production of recombinant proteins has rekindled interest in the behavior of SSPs and the question how they are able to accumulate as stable storage reserves. Seed cells produce vast amounts of SSPs with different subcellular destinations creating an enormous logistic challenge for the endomembrane system. Seed cells contain several different storage organelles including the complex and dynamic protein storage vacuoles (PSVs) and other protein bodies (PBs) derived from the endoplasmic reticulum (ER). Storage proteins destined for the PSV may pass through or bypass the Golgi, using different vesicles that follow different routes through the cell. In addition, trafficking may depend on the plant species, tissue and developmental stage, showing that the endomembrane system is capable of massive reorganization. Some SSPs contain sorting signals or interact with membranes or with other proteins en route in order to reach their destination. The ability of SSPs to form aggregates is particularly important in the formation or ER-derived PBs, a mechanism that occurs naturally in response to overloading with proteins that cannot be transported and that can be used to induce artificial storage bodies in vegetative tissues. In this review, we summarize recent findings that provide insight into the formation, function, and fate of storage organelles and describe tools that can be used to study them.  相似文献   

19.
The mechanisms that control protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus are poorly characterized in plants. Here, we examine in tobacco leaves the structural relationship between Golgi and ER membranes using electron microscopy and demonstrate that Golgi membranes contain elements that are in close association and/or in direct contact with the ER. We further visualized protein trafficking between the ER and the Golgi using Golgi marker proteins tagged with green fluorescent protein. Using photobleaching techniques, we showed that Golgi membrane markers constitutively cycle to and from the Golgi in an energy-dependent and N-ethylmaleimide-sensitive manner. We found that membrane protein transport toward the Golgi occurs independently of the cytoskeleton and does not require the Golgi to be motile along the surface of the ER. Brefeldin A treatment blocked forward trafficking of Golgi proteins before their redistribution into the ER. Our results indicate that in plant cells, the Golgi apparatus is a dynamic membrane system whose components continuously traffic via membrane trafficking pathways regulated by brefeldin A- and N-ethylmaleimide-sensitive machinery.  相似文献   

20.
The malaria parasite Plasmodium falciparum harbours a relict plastid (termed the apicoplast) that has evolved by secondary endosymbiosis. The apicoplast is surrounded by four membranes, the outermost of which is believed to be part of the endomembrane system. Nuclear-encoded apicoplast proteins have a two-part N-terminal extension that is necessary and sufficient for translocation across these four membranes. The first domain of this N-terminal extension resembles a classical signal peptide and mediates translocation into the secretory pathway, whereas the second domain is homologous to plant chloroplast transit peptides and is required for the remaining steps of apicoplast targeting. We explored the initial, secretory pathway component of this targeting process using green fluorescent reporter protein constructs with modified leaders. We exchanged the apicoplast signal peptide with signal peptides from other secretory proteins and observed correct targeting, demonstrating that apicoplast targeting is initiated at the general secretory pathway of P. falciparum. Furthermore, we demonstrate by immunofluorescent labelling that the apicoplast resides on a small extension of the endoplasmic reticulum (ER) that is separate from the cis-Golgi. To define the position of the apicoplast in the endomembrane pathway in relation to the Golgi we tracked apicoplast protein targeting in the presence of the secretory inhibitor Brefeldin A (BFA), which blocks traffic between the ER and Golgi. We observe apicoplast targeting in the presence of BFA despite clear perturbation of ER to Golgi traffic by the inhibitor, which suggests that the apicoplast resides upstream of the cis-Golgi in the parasite's endomembrane system. The addition of an ER retrieval signal (SDEL) - a sequence recognized by the cis-Golgi protein ERD2 - to the C-terminus of an apicoplast-targeted protein did not markedly affect apicoplast targeting, further demonstrating that the apicoplast is upstream of the Golgi. Apicoplast transit peptides are thus dominant over an ER retention signal. However, when the transit peptide is rendered non-functional (by two point mutations or by complete deletion) SDEL-specific ER retrieval takes over, and the fusion protein is localized to the ER. We speculate either that the apicoplast in P. falciparum resides within the ER directly in the path of the general secretory pathway, or that vesicular trafficking to the apicoplast directly exits the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号