首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Valproic acid (VPA) is a clinically available histone deacetylase inhibitor with promising anticancer attributes. Recent studies have demonstrated the anticancer effects of VPA on prostate cancer cells. However, little is known about the differential effects of VPA between metastatic and non-metastatic prostate cancer cells and the relationship between the expression of metastasis suppressor proteins and VPA. In the present study, we demonstrate that inhibition of cell viability and invasion by VPA was more effective in the metastatic prostate cancer cell line PC3 than in the tumorigenic but non-metastatic prostate cell line, RWPE2. Further, we identified that the metastasis suppressor NDRG1 is upregulated in PC3 by VPA treatment. In contrast, NDRG1 was not increased in RWPE2 cells. Also, the suppressed invasion of PC3 cells by VPA treatment was relieved by NDRG1 knockdown. Taken together, we suggest that the anticancer effect of VPA on prostate cancer cells is, in part, mediated through upregulation of NDRG1. We also conclude that VPA has differential effects on the metastasis suppressor gene and invasion ability between non-metastatic and metastatic prostate cancer cells.  相似文献   

2.
3.
Histone deacetylase inhibitors (HDACIs) are promising antineoplastic agents for the treatment of cancer. Here we report that the lipid peroxidation end product 4-hydroxynonenal (HNE) significantly potentiates the anti-tumor effects of the HDAC inhibitor panobinostat (LBH589) in the PC3 prostate cancer cell model. Panobinostat and HNE inhibited proliferation of PC3 cells and the combination of the two agents resulted in a significant combined effect. Cell cycle analysis revealed that both single agents and, to a greater extent, their combined treatment induced G2/M arrest, but cell death occurred in the combined treatment only. Furthermore, HNE and, to a greater extent, the combined treatment induced dephosphorylation of Cdc2 leading to progression into mitosis as confirmed by α-tubulin/DAPI staining and phospho-histone H3 (Ser10) analysis. To evaluate possible induction of DNA damage we utilized the marker phosphorylated histone H2A.X. Results showed that the combination of panobinostat and HNE induced significant DNA damage concomitant with the mitotic arrest. Then, by using androgen receptor (AR)-expressing PC3 cells we observed that the responsiveness to HNE and panobinostat was independent of the expression of functional AR. Taken together, our data suggest that HNE potentiates the antitumoral effect of the HDACI panobinostat in prostate cancer cells.  相似文献   

4.
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.  相似文献   

5.
Chai G  Li L  Zhou W  Wu L  Zhao Y  Wang D  Lu S  Yu Y  Wang H  McNutt MA  Hu YG  Chen Y  Yang Y  Wu X  Otterson GA  Zhu WG 《PloS one》2008,3(6):e2445
5-Aza-2'-deoxycytidine (5-aza-CdR) is used extensively as a demethylating agent and acts in concert with histone deacetylase inhibitors (HDACI) to induce apoptosis or inhibition of cell proliferation in human cancer cells. Whether the action of 5-aza-CdR in this synergistic effect results from demethylation by this agent is not yet clear. In this study we found that inhibition of cell proliferation was not observed when cells with knockdown of DNA methyltransferase 1 (DNMT1), or double knock down of DNMT1-DNMT3A or DNMT1-DNMT3B were treated with HDACI, implying that the demethylating function of 5-aza-CdR may be not involved in this synergistic effect. Further study showed that there was a causal relationship between 5-aza-CdR induced DNA damage and the amount of [(3)H]-5-aza-CdR incorporated in DNA. However, incorporated [(3)H]-5-aza-CdR gradually decreased when cells were incubated in [(3)H]-5-aza-CdR free medium, indicating that 5-aza-CdR, which is an abnormal base, may be excluded by the cell repair system. It was of interest that HDACI significantly postponed the removal of the incorporated [(3)H]-5-aza-CdR from DNA. Moreover, HDAC inhibitor showed selective synergy with nucleoside analog-induced DNA damage to inhibit cell proliferation, but showed no such effect with other DNA damage stresses such as gamma-ray and UV, etoposide or cisplatin. This study demonstrates that HDACI synergistically inhibits cell proliferation with nucleoside analogs by suppressing removal of incorporated harmful nucleotide analogs from DNA.  相似文献   

6.
AimsTo analyze the combined impact of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) and the mammalian target of rapamycin (mTOR) inhibitor RAD001 on prostate cancer cell growth.Main methodsPC-3, DU-145 and LNCaP cells were treated with RAD001, VPA or with an RAD001–VPA combination for 3 or 5 days. Tumor cell growth, cell cycle progression and cell cycle regulating proteins were then investigated by MTT assay, flow cytometry and Western blotting, respectively. Effects of drug treatment on cell signaling pathways were determined.Key findingsSeparate application of RAD001 or VPA distinctly reduced tumor cell growth and impaired cell cycle progression. Significant additive effects were evoked when both drugs were used in concert. Particularly, the cell cycle regulating proteins cdk1, cdk2, cdk4 and cyclin B were reduced, whereas p21 and p27 were enhanced by the RAD001–VPA combination. Signaling analysis revealed deactivation of EGFr, ERK1/2 and p70S6k. Phosphorylation of Akt was diminished in DU-145 but elevated in PC-3 and LNCaP cells.SignificanceThe RAD001–VPA combination exerted profound antitumor properties on a panel of prostate cancer cell lines. Therefore, simultaneous blockage of HDAC and mTOR related pathways should be considered when designing novel therapeutic strategies for treating prostate carcinoma.  相似文献   

7.
Epigenetic silencing of the tumor suppressor gene, RARβ2, through histone deacetylation has been established as an important process of cervical carcinogenesis. This pivotal role has led to the suggestion that a combination of retinoids selective for RARβ2 with histone deacetylase (HDAC) inhibitors may have therapeutic potential. Valproic acid (VPA), a HDAC inhibitor, has a critical role in the regulation of gene expression through histone acetylation and causes transformed cells to undergo growth arrest, differentiation, and apoptosis. Therefore, we hypothesized that the combination of VPA and ATRA could restore RARβ2 expression, thus resulting in enhanced anti-neoplastic activity in cervical cancer. Here, we show that VPA combined with ATRA led to hyperacetylation of histone H3 and a significant alteration of gene expression in cervical cancer cells, including RARβ2 gene expression, which was upregulated 50- to 90-fold. The combination therapy effectively inhibited the growth of cervical cancer cells more than the single agent treatment both in vitro and in vivo. The additive effects were associated with a significant upregulation of p21(CIP1) and p53 as well as a pronounced decrease in p-Stat3. Furthermore, the combined treatment led to cell cycle arrest predominantly at the G1 phase, and it preferentially induced cell differentiation rather than apoptosis in cervical cancer cells. The differentiation program was determined by the presence of E-cadherinmediated adhesion and activation of the PI3K/Akt pathway. Taken together, these results provide new insight into the mechanisms of enhanced antitumor activity of the HDAC inhibitor and ATRA regimen, thus offering a new therapeutic strategy for cervical cancer patients.  相似文献   

8.
Suberonylanilide hydroxamic acid (SAHA) is an orally administered histone deacetylase inhibitor (HDACI) that has shown significant antitumour activity in a variety of tumour cells. To identify proteins involved in its antitumour activity, we utilized a proteomic approach to reveal protein expression changes in the human cervical cancer cell line HeLa following SAHA treatment. Protein expression profiles were analysed by 2-dimensional polyacrylamide gel electrophoresis (2-DE) and protein identification was performed on a MALDI-Q-TOF MS/MS instrument. As a result, a total of nine differentially expressed proteins were visualized by 2-DE and Coomassie brilliant blue (CBB) staining. Further, all the changed proteins were positively identified via mass spectrometry (MS)/MS analysis. Of these, PGAM1 was significantly downregulated in HeLa cells after treatment with SAHA. Moreover, PGAM1 has been proven to be downregulated in another cervical cancer cell line (CaSki) by western blot analysis. Together, using proteomic tools, we identified several differentially expressed proteins that underwent SAHA-induced apoptosis. These changed proteins may provide some clues to a better understanding of the molecular mechanisms underlying SAHA-induced apoptosis in cervical cancer.  相似文献   

9.
10.
SI RT6 is an important histone modifying protein that regulates DNA repair, telomere maintenance, energy metabolism, and target gene expression. Recently SIRT6 has been identifi ed as a tumor suppressor and is downregulated in certain cancer types, but not in other cancers. From deposited gene profi ling studies we found that SIRT6 was overexpressed in prostate tumors, compared with normal or paratumor prostate tissues. Tissue microarray studies confi rmed the higher levels of SIRT6 in both prostate tumor tissues and prostate cancer cells than in their normal counterparts. Knockdown of SIRT6 in human prostate cancer cells led to sub-G1 phase arrest of cell cycle, increased apoptosis, elevated DNA damage level and decrease in BCL2 gene expression. Moreover, SIRT6-deficiency reduced cell viability and enhanced chemotherapeutics sensitivity. Taken together, this study provides the fi rst evidence of SIRT6 overexpression in human prostate cancer, and SIRT6 regulation could be exploited for prostate cancer therapy.  相似文献   

11.
Exposure of living cells to intracellular or external mutagens results in DNA damage. Accumulation of DNA damage can lead to serious consequences because of the deleterious mutation rate resulting in genomic instability, cellular senescence, and cell death. To counteract genotoxic stress, cells have developed several strategies to detect defects in DNA structure. The eukaryotic genomic DNA is packaged through histone and nonhistone proteins into a highly condensed structure termed chromatin. Therefore the cellular enzymatic machineries responsible for DNA replication, recombination, and repair must circumvent this natural barrier in order to gain access to the DNA. Several studies have demonstrated that histone/chromatin modifications such as acetylation, methylation, and phosphorylation play crucial roles in DNA repair processes. This review will summarize the recent data that suggest a regulatory role of the epigenetic code in DNA repair processes. We will mainly focus on different covalent reversible modifications of histones as an initial step in early response to DNA damage and subsequent DNA repair. Special focus on a potential epigenetic histone code for these processes will be given in the last section. We also discuss new technologies and strategies to elucidate the putative epigenetic code for each of the DNA repair processes discussed.  相似文献   

12.
13.
The extraordinary radioresistance of Deinococcus radiodurans primarily originates from its efficient DNA repair ability. The kinetics of proteomic changes induced by a 6-kGy dose of gamma irradiation was mapped during the post-irradiation growth arrest phase by two-dimensional protein electrophoresis coupled with mass spectrometry. The results revealed that at least 37 proteins displayed either enhanced or de novo expression in the first 1 h of post-irradiation recovery. All of the radiation-responsive proteins were identified, and they belonged to the major functional categories of DNA repair, oxidative stress alleviation, and protein translation/folding. The dynamics of radiation-responsive protein levels throughout the growth arrest phase demonstrated (i) sequential up-regulation and processing of DNA repair proteins such as single-stranded DNA-binding protein (Ssb), DNA damage response protein A (DdrA), DNA damage response protein B (DdrB), pleiotropic protein promoting DNA repair (PprA), and recombinase A (RecA) substantiating stepwise genome restitution by different DNA repair pathways and (ii) concurrent early up-regulation of proteins involved in both DNA repair and oxidative stress alleviation. Among DNA repair proteins, Ssb was found to be the first and most abundant radiation-induced protein only to be followed by alternate Ssb, DdrB, indicating aggressive protection of single strand DNA fragments as the first line of defense by D. radiodurans, thereby preserving genetic information following radiation stress. The implications of both qualitative or quantitative and sequential or co-induction of radiation-responsive proteins for envisaged DNA repair mechanism in D. radiodurans are discussed.  相似文献   

14.
Inhibitor of growth (ING) family of proteins are known to coordinate with histone acetyltransferases and regulate the key events of cell cycle and DNA repair. Previous work from our lab showed that Ing1b regulated the nucleotide excision repair by facilitating histone acetylation and subsequent chromatin relaxation. Further, it was also shown that Ing1b protected the cells from genomic instability induced cell death by promoting ubiquitination of proliferating cell nuclear antigen (PCNA). In the present study we explored the role of Ing1b in the repair of oxidized DNA and prevention of oxidative stress induced genotoxic cell death. Using HCT116 cells we show that Ing1b protein expression is induced by treatment with H2O2. Ing1b lacking cells showed decreased ability to repair the oxidized DNA. PCNA monoubiquitination, a critical event of DNA repair was blunted in Ing1b knock down cells and augmented in Ing1b over expressing cells. Moreover, oxidative stress induced cell death was higher in cells lacking Ing1b whereas it was lower in Ing1b over expressing cells. Finally we show that inhibition of histone deacetylases, rescued the Ing1b knock down cells from cytotoxic effects of H2O2 treatment.  相似文献   

15.
Histone ubiquitylation is emerging as an important protective component in cellular responses to DNA damage. The ubiquitin ligases RNF8 and RNF168 assemble ubiquitin chains onto histone molecules surrounding DNA breaks and facilitate retention of DNA repair proteins. Although RNF8 and RNF168 play important roles in repair of DNA double strand breaks, their requirement for cell protection from replication stress is largely unknown. In this study, we uncovered RNF168-independent roles of RNF8 in repair of replication inhibition-induced DNA damage. We showed that RNF8 depletion, but not RNF168 depletion, hyper-sensitized cells to hydroxyurea and aphidicolin treatment. Consistently, hydroxyurea induced persistent single strand DNA lesions and sustained CHK1 activation in RNF8-depleted cells. In line with strict requirement for RAD51-dependent repair of hydroxyurea-stalled replication forks, RNF8 depletion compromised RAD51 accumulation onto single strand DNA lesions, suggesting that impaired replication fork repair may underlie the enhanced cellular sensitivity to replication arrest observed in RNF8-depleted cells. In total, our study highlights the differential requirement for the ubiquitin ligase RNF8 in facilitating repair of replication stress-associated DNA damage.  相似文献   

16.
Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.  相似文献   

17.
BACKGROUND : Valproic acid (VPA) is a frequently used antiepileptic agent and known teratogen. Previous research suggests that inhibition of histone deacetylases (HDACs) may play a role in VPA‐induced teratogenicity. We have also shown that VPA exposure leads to both an increase in reactive oxygen species (ROS) production and increased frequency of homologous recombination (HR). METHODS : In the present study, we evaluated the role of HDAC inhibition in VPA‐initiated HR to determine if HDAC inhibition could alter repair activity and/or cause DNA double‐strand breaks (DSBs), which would then initiate repair. Histone acetylation status was assessed to determine if VPA exposure led to HDAC inhibition in CHO 33 cells. RESULTS : Our results demonstrate that VPA (5 mM) exposure leads to increased acetylated histone H3 and H4 protein levels after 10 to 24 hr. Secondly, in our recombination assay where an artificial DNA DSB was induced in CHO 33 cells to assess repair activity, VPA exposure did not affect the repair activity of VPA‐initiated HR. Subsequently, to determine if VPA could increase susceptibility to DNA DSBs, the number of γ‐H2AX foci was assessed using immunocytochemistry and results revealed an increase in γ‐H2AX foci after 10‐ to 24‐hr exposure to VPA. CONCLUSIONS : Although we demonstrated the protective effect of polyethylene glycol‐catalase against VPA‐induced HR and the generation of intracellular ROS within 24 hr, we did not observed an increase in DNA oxidation. These studies suggest that HDAC inhibition and ROS signaling may play roles in DNA maintenance and cell‐cycle arrest in initiating DNA damage and repair. Birth Defects Res (Part B) 89:124–132, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
It was reported that valproic acid (VPA, a histone deacetylase inhibitor) can sensitize cancer cells to hydroxyurea (HU, a ribonucleotide reductase inhibitor) for chemotherapy, although the mechanism of VPA-induced HU sensitization is unclear. In this study, we systematically characterized VPA-induced HU sensitization of breast cancer cells. Multiple breast cancer cell models were employed to investigate whether the safe concentration of 0.5 mM VPA and 2 mM HU can result in DNA double-strand breaks (DSBs) and impact cell survival. Furthermore, the underlying mechanism was explored through cell biology assays, including clonogenic survival, homologous recombination (HR) activity, immunoblot and immunofluorescence. We found that VPA and HU cooperatively suppressed cancer cell survival. VPA resulted in the accumulation of more DNA double-strand breaks (DSBs) in response to HU-induced replication arrest and was able to block HU-stimulated homologous recombination (HR) through inhibiting the activity of two key HR repair proteins by hyperphosphorylation of replication protein A2 (RPA2-p) and recombinase Rad51. However, apoptosis was not detected under this condition. In addition, the results from the survival fraction in the cells expressing defective RPA2-p showed that VPA disrupted the HU-induced RPA2-p-Rad51-mediated HR pathway. Importantly, these findings were further supported by analyzing primary-culture cells from the tissue of chemical carcinogen (DMBA)-induced breast cancer in rats. Thus, our data demonstrated that VPA and HU synergistically suppressed tumor cells via disturbing RPA2-p-mediated DNA repair pathway, which provides a new way for combining chemotherapeutic drugs to sensitize breast cancer cells.  相似文献   

19.
Aurora kinase B (AURKB) is critical to the process of mitosis, aiding in chromosome condensation by phosphorylating histone H3. We investigated the effects of AZD1152, an AURKB inhibitor, on radiosensitivity of androgen-insensitive prostate cancer cells. The goal of this study was to test whether AZD1152 increases the susceptibility of hormone-refractory prostate cancer cells to radiation-induced DNA damage and to determine the conditions of AZD1152 treatment that maximize radiosensitization. PC3 and DU145 cells were treated with various AZD1152 doses for various durations to elucidate the conditions that yielded maximal increases in G(2)/M-phase and polyploid cells. To assess DNA damage, γ-H2AX phosphorylation was quantified for cells grown under radiosensitizing conditions and subjected to either no radiation or 5 Gy radiation. Radiosensitivity was determined by clonogenic assays. Cell cycle effects in both cell lines were maximized by treatment with 60 nM AZD1152 for 48 h. AZD1152-treated cells exhibited significantly increased DNA damage 30 min postirradiation (PC3: 100% compared to 68%, P = 0.035; DU145: 100% compared to 69%, P = 0.034), with additional DNA damage 6 h postirradiation (PC3: 85% compared to 15%, P = 0.002; DU145: 67% compared to 21%, P = 0.012). Radiosensitivity was increased in both cell lines, with dose enhancement ratios of 1.53 for PC3 cells (P = 0.017) and 1.71 for DU145 cells (P = 0.02). This study identifies the optimal AZD1152 treatment conditions to maximize the radiosensitization of PC3 and DU145 cells. These results suggest a major role for DNA damage and impairment of DNA repair mechanisms in AZD1152-induced radiosensitization of prostate cancer cells.  相似文献   

20.
DNA damage detection and repair take place in the context of chromatin, and histone proteins play important roles in these events. Post-translational modifications of histone proteins are involved in repair and DNA damage signalling processes in response to genotoxic stresses. In particular, acetylation of histones H3 and H4 plays an important role in the mammalian and yeast DNA damage response and survival under genotoxic stress. However, the role of post-translational modifications to histones during the plant DNA damage response is currently poorly understood. Several different acetylated H3 and H4 N-terminal peptides following X-ray treatment were identified using MS analysis of purified histones, revealing previously unseen patterns of histone acetylation in Arabidopsis. Immunoblot analysis revealed an increase in the relative abundance of the H3 acetylated N-terminus, and a global decrease in hyperacetylation of H4 in response to DNA damage induced by X-rays. Conversely, mutants in the key DNA damage signalling factor ATM (ATAXIA TELANGIECTASIA MUTATED) display increased histone acetylation upon irradiation, linking the DNA damage response with dynamic changes in histone modification in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号