首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanosoma cruzi infection leads to development of chronic Chagas disease. In this article, we provide an update on the current knowledge of the mechanisms employed by the parasite to gain entry into the host cells and establish persistent infection despite activation of a potent immune response by the host. Recent studies point to a number of T. cruzi molecules that interact with host cell receptors to promote parasite invasion of the diverse host cells. T. cruzi expresses an antioxidant system and thromboxane A(2) to evade phagosomal oxidative assault and suppress the host's ability to clear parasites. Additional studies suggest that besides cardiac and smooth muscle cells that are the major target of T. cruzi infection, adipocytes and adipose tissue serve as reservoirs from where T. cruzi can recrudesce and cause disease decades later. Further, T. cruzi employs at least four strategies to maintain a symbiotic-like relationship with the host, and ensure consistent supply of nutrients for its own survival and long-term persistence. Ongoing and future research will continue to help refining the models of T. cruzi invasion and persistence in diverse tissues and organs in the host.  相似文献   

2.
A glycoprotein of 25,000 daltons (G25) purified from T. cruzi extracts is recognized by serum antibodies of Chagas' disease patients. These human antibodies were isolated by affinity chromatography and were used to demonstrate that G25 antigenic determinants are i) represented at the parasite surface, and ii) are expressed in all developmental stages of the parasite's life cycle, as well as in several T. cruzi strains. This antigen-antibody system may be useful for the diagnosis of Chagas' disease because antibodies to radiolabeled G25 are found in the serum of 96.5% of 173 chagasic patients from different endemic areas, but are not found in the serum from other individuals. Taken collectively, the data suggest that antibodies to G25 define highly conserved determinants of the species T. cruzi. Moreover, its remarkable immunogenicity to infected humans offers an opportunity to investigate the role of specific immunologic responses in the pathogenicity of Chagas' disease.  相似文献   

3.
4.
Background  Chagas disease is common in Central and South America and the southern United States. The causative agent is Trypanosoma cruzi (order Kinetoplastida, family Trypanosomatidae), a kinetoplastid protozoan parasite of humans and other vertebrates. It is a serious public health issue and the leading cause of heart disease and cardiovascular death in Central and South America. In 1984, a colony baboon was discovered to be infected with T. cruzi .
Methods  As the initial diagnosis was made by microscopic observation of the amastigote forms of T. cruzi in myocardial fibers, T. cruzi amastigotes have been identified in three additional baboons.
Results  The primary findings were similar in all four baboons and were congestive heart failure with edema of dependent areas, hydrothorax, hydropericardium, and multifocal to diffuse lymphoplasmacytic myocarditis.
Conclusions  A baboon animal model of Chagas disease could contribute significantly to the development of therapies for the disease in humans.  相似文献   

5.
Infection of humans with the protozoan Trypanosoma cruzi leads to Chagas disease, or American trypanosomiasis, a disease that affects nearly 20 million people, and constitutes one of the largest socioeconomic burdens in Latin America. Much of the present knowledge on pathogenic mechanisms underlying T. cruzi infection comes from experimental murine models. Here, George A. DosReis reviews recent findings about the features of host cell-mediated immunity against the parasite and possible mechanisms leading to chronic infection.  相似文献   

6.
Chagas disease in the chronic phase may develop into cardiac and/or digestive forms. The pathogenesis of the disease is not yet clear and studies have been carried out to elucidate the role of parasite persistence in affected organs. The aim of this study was to detect and quantify Trypanosoma cruzi in paraffin-embedded tissue samples from chronic patients using NPCR (nested polymerase chain reaction) and QPCR (quantitative polymerase chain reaction) methods. These results were correlated to anatomopathological alterations in the heart and gastrointestinal tract (GIT). Of the 23 patients studied, 18 presented the cardiac form and five presented the cardiodigestive form of Chagas disease. DNA samples were randomly isolated from formalin-fixed paraffin-embedded sections of heart and GIT tissue of 23 necropsies and were analyzed through NPCR amplification. T. cruzi DNA was detected by NPCR in 48/56 (85.7%) heart and 35/42 (83.3%) GIT samples from patients with the cardiac form. For patients with the cardiodigestive form, NPCR was positive in 12/14 (85.7%) heart and in 14/14 (100%) GIT samples. QPCR, with an efficiency of 97.6%, was performed in 13 samples (11 from cardiac and 2 from cardiodigestive form) identified previously as positive by NPCR. The number of T. cruzi copies was compared to heart weight and no statistical significance was observed. Additionally, we compared the number of copies in different tissues (both heart and GIT) in six samples from the cardiac form and two samples from the cardiodigestive form. The parasite load observed was proportionally higher in heart tissues from patients with the cardiac form. These results show that the presence of the parasite in tissues is essential to Chagas disease pathogenesis.  相似文献   

7.
Trypanosoma cruzi, the causative agent of Chagas' disease, is an important cause of heart disease in Latin America. The parasite is transmitted mucosally, with both intra- and extracellular life stages in the human host. Cruzipain, the major cysteinyl proteinase of T. cruzi, has been shown to be antigenic in both humans and mice during infection with the parasite. We extend these observations, showing here that multiple murine immune subsets of potential importance for vaccine-induced protection can be induced by cruzipain. Cruzipain-specific serum IgG responses were induced during chronic infection with T. cruzi. In addition, T. cruzi mucosal infection stimulated the development of cruzipain-specific secretory IgA detectable in fecal extracts from infected mice. Cruzipain-specific type 1 cytokine responses characterized by the production of IFN-gamma but not IL-4 were also detectable during murine infection. Furthermore, immunization of mice with a DNA vaccine encoding cruzipain was shown to stimulate cytotoxic T lymphocyte (CTL) responses capable of recognizing and lysing T. cruzi-infected cells. The induction of serum antibody, mucosal IgA, Th1 cytokine and CTL responses by cruzipain in mice supports the use of this parasite protein for further efforts in T. cruzi vaccine development.  相似文献   

8.
Trypanosoma cruzi, the causative agent of Chagas' disease in humans, is an intracellular protozoan parasite with the ability to invade a wide variety of mammalian cells by a unique and remarkable process in cell biology that is poorly understood. Here we present evidence suggesting a role for the host phosphatidylinositol (PI) 3-kinases during T. cruzi invasion. The PI 3-kinase inhibitor wortmannin marked inhibited T. cruzi infection when macrophages were pretreated for 20 min at 37 degrees C before inoculation. Infection of macrophages with T. cruzi markedly stimulated the formation of the lipid products of the phosphatidylinositol (PI) 3-kinases, PI 3-phospate, PI 3,4-biphosphate, and PI 3,4,5-triphosphate, but not PI 4-phosphate or PI 4,5-biphosphate. This activation was inhibited by wortmannin. Infection with T. cruzi also stimulated a marked increase in the in vitro lipid kinase activities that are present in the immunoprecipitates of anti-p85 subunit of class I PI 3-kinase and anti-phosphotyrosine. In addition, T. cruzi invasion also activated lipid kinase activity found in immunoprecipitates of class II and class III PI 3-kinases. These data demonstrate that T. cruzi invasion into macrophages strongly activates separated PI 3-kinase isoforms. Furthermore, the inhibition of the class I and class III PI 3-kinase activities abolishes the parasite entry into macrophages. These findings suggest a prominent role for the host PI 3-kinase activities during the T. cruzi infection process.  相似文献   

9.
Trypanosoma cruzi must invade mammalian host cells to replicate and complete its life cycle. Almost all nucleated mammalian cells can be invaded by the parasite following a receptor-ligand recognition as an early prerequisite. In this work, we describe a 67-kDa lectin-like glycoprotein that binds to desialylated human erythrocyte membranes in a galactose-dependent way. This protein is present on the parasite surface in both infective and non-infective stages of T. cruzi. More interestingly, we demonstrate by lectin-immuno-histochemistry assays that the 67kDa protein is involved in the recognition of host-cell receptors in mouse cardiac tissue and human cardiac aortic endothelium and mammary artery tissue. Moreover, antibodies against the 67kDa glycoprotein inhibit in vitro host-cell invasion by 63%. These data suggest that the 67kDa glycoprotein in vivo is needed for host-cell invasion by T. cruzi.  相似文献   

10.
Trypanosoma cruzi is a protozoan parasite that infects vertebrates, causing in humans a pathological condition known as Chagas' disease. The infection of host cells by T. cruzi involves a vast collection of molecules, including a family of 85 kDa GPI-anchored glycoproteins belonging to the gp85/trans-sialidase superfamily, which contains a conserved cell-binding sequence (VTVXNVFLYNR) known as FLY, for short. Herein, it is shown that BALB/c mice administered with a single dose (1 μg/animal, intraperitoneally) of FLY-synthetic peptide are more susceptible to infection by T. cruzi, with increased systemic parasitaemia (2-fold) and mortality. Higher tissue parasitism was observed in bladder (7·6-fold), heart (3-fold) and small intestine (3·6-fold). Moreover, an intense inflammatory response and increment of CD4+ T cells (1·7-fold) were detected in the heart of FLY-primed and infected animals, with a 5-fold relative increase of CD4+CD25+FoxP3+ T (Treg) cells. Mice treated with anti-CD25 antibodies prior to infection, showed a decrease in parasitaemia in the FLY model employed. In conclusion, the results suggest that FLY facilitates in vivo infection by T. cruzi and concurs with other factors to improve parasite survival to such an extent that might influence the progression of pathology in Chagas' disease.  相似文献   

11.
Killing of bloodstream forms of Trypanosoma cruzi, the unicellular parasite that causes Chagas' disease in humans, by human eosinophils in the presence of specific antibody to the parasite was inhibited by the polyanion heparin in a dose-dependent manner. The concentration of heparin required to completely abolish eosinophil-effected killing of the flagellate increased as the eosinophil to parasite ratio increased. These results suggest that antibody-dependent eosinophil-mediated cytotoxicity is mediated by basic constituents of the eosinophil granule.  相似文献   

12.
We evaluated the presence and distribution of Trypanosoma cruzi DNA in a mummy presenting with megacolon that was dated as approximately 560 +/- 40 years old. The mummy was from the Perua?u Valley in the state of Minas Gerais, Brazil. All samples were positive for T. cruzi minicircle DNA, demonstrating the presence and broad dissemination of the parasite in this body. From one sample, a mini-exon gene fragment was recovered and characterized by sequencing and was found to belong to the T. cruzi I genotype. This finding suggests that T. cruzi I infected humans during the pre-Columbian times and that, in addition to T. cruzi infection, Chagas disease in Brazil most likely preceded European colonization.  相似文献   

13.
Chagas heart disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially fatal cardiomyopathy often associated with cardiac autoimmunity. T. cruzi infection induces the development of autoimmunity to a number of antigens via molecular mimicry and other mechanisms, but the genesis and pathogenic potential of this autoimmune response has not been fully elucidated. To determine whether exposure to T. cruzi antigens alone in the absence of active infection is sufficient to induce autoimmunity, we immunized A/J mice with heat-killed T. cruzi (HKTC) emulsified in complete Freund's adjuvant, and compared the resulting immune response to that induced by infection with live T. cruzi. We found that HKTC immunization is capable of inducing acute cardiac damage, as evidenced by elevated serum cardiac troponin I, and that this damage is associated with the generation of polyantigenic humoral and cell-mediated autoimmunity with similar antigen specificity to that induced by infection with T. cruzi. However, while significant and preferential production of Th1 and Th17-associated cytokines, accompanied by myocarditis, develops in T. cruzi-infected mice, HKTC-immunized mice produce lower levels of these cytokines, do not develop Th1-skewed immunity, and lack tissue inflammation. These results demonstrate that exposure to parasite antigen alone is sufficient to induce autoimmunity and cardiac damage, yet additional immune factors, including a dominant Th1/Th17 immune response, are likely required to induce cardiac inflammation.  相似文献   

14.
Antibodies against heart vascular structures and striated muscle cells interstitium (EVI antibodies) persist in Chagas' disease patients who had been cured by specific treatment as demonstrated by negative xenodiagnosis, conventional serology (CS) and complement mediated lysis (CoML). On the other hand, EVI antibodies are either present or absent in treated patients presenting positive CS but negative CoML. Since CoML detects antibodies associated to resistance, EVI antibodies are not likely to participate in the control of T. cruzi infections although they might be induced by cross-reacting antigens of heart cells and the parasite. They are neither necessarily related to antibodies responsible for CS. Absorption with T. cruzi and heart tissue confirms the suggestion that EVI antibodies are induced by a number of antigenic determinants, most from heart structures with a minor participation of T. cruzi antigens.  相似文献   

15.
Polyclonal antibodies obtained against antigenic proteins encoded by six recombinant DNA clones of Trypanosoma cruzi were used for the ultrastructural localization of the respective antigens in thin sections of parasites (epimastigote, amastigote and trypomastigote forms of T. cruzi) embedded at low temperature in Lowicryl K4M resin. Antigens of high molecular weight containing tandemly repeated amino acid sequence motifs and recognized by sera from patients with Chagas' disease, were located only in the flagellum, where it contacts the parasite cell body. Other antigens were located on the surface of the parasite while still others were found within the flagellar pocket, as is the case with an antigen released during the acute phase of Chagas' disease. Thus, we conclude that some of the T. cruzi proteins which are antigenic in human infections are located in defined regions of the parasite. Some of the antigens were not expressed to the same extent in the three different developmental stages of the parasite.  相似文献   

16.
Chagas' disease is a potentially life-threatening illness caused by the unicellular protozoan parasite Trypanosoma cruzi. It is transmitted to humans by triatomine bugs where T. cruzi multiplies and differentiates in the digestive tract. The differentiation of proliferative and non-infective epimastigotes into infective metacyclic trypomastigotes (metacyclogenesis) can be correlated to nutrient exhaustion in the gut of the insect vector. In vitro, metacyclic-trypomastigotes can be obtained when epimastigotes are submitted to nutritional stress suggesting that metacyclogenesis is triggered by nutrient starvation. The molecular mechanism underlying such event is not understood. Here, we investigated the role of one of the key signaling responses elicited by nutritional stress in all other eukaryotes, the inhibition of translation initiation by the phosphorylation of the eukaryotic initiation factor 2α (eIF2α), during the in vitro differentiation of T. cruzi. Monospecific antibodies that recognize the phosphorylated Tc-eIF2α form were generated and used to demonstrate that parasites subjected to nutritional stress show increased levels of Tc-eIF2α phosphorylation. This was accompanied by a drastic inhibition of global translation initiation, as determined by polysomal profiles. A strain of T. cruzi overexpressing a mutant Tc-eIF2α, incapable of being phosphorylated, showed a block on translation initiation, indicating that such a nutritional stress in trypanosomatids induces the conserved translation inhibition response. In addition, Tc-eIF2α phosphorylation is critical for parasite differentiation since the overexpression of the mutant eIF2α in epimastigotes abolished metacyclogenesis. This work defines the role of eIF2α phosphorylation as a key step in T. cruzi differentiation.  相似文献   

17.
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major public health problem in most of Latin America. A key priority is the development of new treatments, due to the poor efficacy of current ones. We report here the comparative evaluation of therapeutic DNA vaccines encoding various T. cruzi antigens. ICR mice infected with 500 parasites intraperitoneally were treated at 5 and 12 days postinfection with 20 microg of plasmid DNA encoding T. cruzi antigens TSA-1, TS, ASP-2-like, Tc52 or Tc24. Treatment with plasmid encoding TS and/or ASP-2-like antigens had no significant effect on parasitemia or survival. Treatment with Tc52 DNA significantly reduced parasitemia, as well as cardiac parasite burden, and improved survival, although myocarditis was not significantly affected. Finally, treatment with plasmids encoding Tc24 and TSA-1 induced the most complete control of disease as evidenced by significant reductions in parasitemia, mortality, myocarditis and heart parasite burden. These data demonstrate that therapeutic vaccine efficacy is dependent on the antigen and suggest that DNA vaccines encoding Tc24, TSA-1, and Tc52 represent the best candidates for further studies of a therapeutic vaccine against Chagas disease.  相似文献   

18.
19.
Trypanosoma cruzi is a hemoflagelate parasite associated with heart dysfunctions causing serious problems in Central and South America. Beagle dogs develop the symptoms of Chagas disease in humans, and could be an important experimental model for better understanding the immunopathogenic mechanisms involved in the chagasic infection. In the present study we investigated the relation among biological factors inherent to the parasite (trypomastigote polymorphism and in vitro infectivity) and immunoglobulin production, inflammation, and fibrosis in the heart of Beagle dogs infected with either T. cruzi Y or Berenice-78 strains. In vitro infectivity of Vero cells as well as the extension of cardiac lesions in infected Beagle was higher for Y strain when compared to Berenice-78 strain. These data suggested that in vitro infectivity assays may correlate with pathogenicity in vivo. In fact, animals infected with Y strain, which shows prevalence of slender forms and high infectivity in vitro, presented cardiomegaly, inflammation, and fibrosis in heart area. Concerning the immunoglobulin production, no statistically significant difference was observed for IgA, IgM or IgG levels among T. cruzi infected animals. However, IgA together IgM levels have shown to be a good marker for the acute phase of Chagas disease.  相似文献   

20.
Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. The main mode of transmission of this disease in endemic areas is through an insect vector called triatomine bug. Triatomines become infected with T. cruzi by feeding blood of an infected person or animal. Chagas disease is considered the most important vector borne infection in Latin America. It is estimated that between 16 and 18 millions of persons are infected with T. cruzi, and at least 20,000 deaths each year. In this work we formulate a model for the transmission of this infection among humans, vectors and domestic mammals. Our main objective is to assess the effectiveness of Chagas disease control measures. For this, we do sensitivity analysis of the basic reproductive number R? and the endemic proportions with respect to epidemiological and demographic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号