首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The RstA/RstB system is a bacterial two-component regulatory system consisting of the membrane sensor, RstB and its cognate response regulator (RR) RstA. The RstA of Klebsiella pneumoniae (kpRstA) consists of an N-terminal receiver domain (RD, residues 1–119) and a C-terminal DNA-binding domain (DBD, residues 130–236). Phosphorylation of kpRstA induces dimerization, which allows two kpRstA DBDs to bind to a tandem repeat, called the RstA box, and regulate the expression of downstream genes. Here we report the solution and crystal structures of the free kpRstA RD, DBD and DBD/RstA box DNA complex. The structure of the kpRstA DBD/RstA box complex suggests that the two protomers interact with the RstA box in an asymmetric fashion. Equilibrium binding studies further reveal that the two protomers within the kpRstA dimer bind to the RstA box in a sequential manner. Taken together, our results suggest a binding model where dimerization of the kpRstA RDs provides the platform to allow the first kpRstA DBD protomer to anchor protein–DNA interaction, whereas the second protomer plays a key role in ensuring correct recognition of the RstA box.  相似文献   

3.
The stationary-phase-inducible sigma factor, σS (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella. We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the σS protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of σS, showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease.  相似文献   

4.
The stationary-phase-inducible sigma factor, sigma(S) (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella: We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the sigma(S) protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of sigma(S), showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease.  相似文献   

5.
6.
7.
The rpoS gene encodes the alternative sigma factor sigma(S) (RpoS) and is required for survival of bacteria under starvation and stress conditions. It is also essential for Salmonella virulence in mice. Most work on the RpoS regulon has been in the closely related enterobacterial species Escherichia coli. To characterize the RpoS regulon in Salmonella, we isolated 38 unique RpoS-activated lacZ gene fusions from a bank of Salmonella enterica serovar Typhimurium mutants harboring random Tn5B21 mutations. Dependence on RpoS varied from 3-fold to over 95-fold, and all gene fusions isolated were regulated by growth phase. The identities of 21 RpoS-dependent fusions were determined by DNA sequence analysis. Seven of the fusions mapped to DNA regions in Salmonella serovar Typhimurium that do not match any known E. coli sequence, suggesting that the composition of the RpoS regulon differs markedly in the two species. The other 14 fusions mapped to 13 DNA regions very similar to E. coli sequences. None of the insertion mutations in DNA regions common to both species appeared to affect Salmonella virulence in BALB/c mice. Of these, only three (otsA, katE, and poxB) are located in known members of the RpoS regulon. Ten insertions mapped in nine open reading frames of unknown function (yciF, yehY, yhjY, yncC, yjgB, yahO, ygaU, ycgB, and yeaG) appear to be novel members of the RpoS regulon. One insertion, that in mutant C52::H87, was in the noncoding region upstream from ogt, encoding a O(6)-methylguanine DNA methyltransferase involved in repairing alkylation damage in DNA. The ogt coding sequence is very similar to the E. coli homolog, but the ogt 5' flanking regions were found to be markedly different in the two species, suggesting genetic rearrangements. Using primer extension assays, a specific ogt mRNA start site was detected in RNAs of the Salmonella serovar Typhimurium wild-type strains C52 and SL1344 but not in RNAs of the mutant strains C52K (rpoS), SL1344K (rpoS), and C52::H87. In mutant C52::H87, Tn5B21 is inserted at the ogt mRNA start site, with lacZ presumably transcribed from the identified RpoS-regulated promoter. These results indicate that ogt gene expression in Salmonella is regulated by RpoS in stationary phase of growth in rich medium, a finding that suggests a novel role for RpoS in DNA repair functions.  相似文献   

8.
PhoP-PhoQ是调控沙门菌毒力的重要双组分信号转导系统,由组氨酸蛋白激酶PhoQ和反应调节蛋白PhoP组成。PhoP-PhoQ可调节沙门菌对Mg2+及其他周质环境的适应性,并调控沙门菌感染中毒力基因的转录和表达。PhoP-PhoQ调控的毒力基因参与沙门菌对上皮细胞的侵袭、胞内生存、对抗菌肽的抵抗反应、脂质A的修饰、Ⅲ型分泌系统效应蛋白的分泌等环节。PhoP-PhoQ还可与其他双组分信号转导系统或调节子合作,调控沙门菌的毒力。因此,PhoP-PhoQ双组分信号转导系统在沙门菌的毒力调控中发挥重要作用。  相似文献   

9.
10.
In stressful conditions, bacteria enter into the viable but non-culturable (VBNC) state; in this state, they are alive but fail to grow on conventional media on which they normally grow and develop into colonies. The molecular basis underlying this state is unknown. We investigated the role of the alternative sigma factor RpoS (σ(38)) in the VBNC induction using Salmonella Dublin, Salmonella Oranienburg and Salmonella Typhimurium LT2. VBNC was induced by osmotic stress in LT2 and Oranienburg. Dublin also entered the VBNC state, but more slowly than LT2 and Oranienburg did. The LT2 rpoS gene was initiated from an alternative initiation codon, TTG; therefore, LT2 had smaller amounts of RpoS than Dublin and Oranienburg. Oranienburg had a single amino acid substitution (D118N) in RpoS (RpoS(SO)). Disruption of rpoS caused rapid VBNC induction. VBNC induction was significantly delayed by Dublin-type RpoS (RpoS(SD)), but only slightly by RpoS(SO). These results indicate that RpoS delays VBNC induction and that the rapid induction of VBNC in LT2 and Oranienburg may be due to lower levels of RpoS and to the D118N amino acid substitution, respectively. Reduced RpoS intracellular level was observed during VBNC induction. During the VBNC induction, Salmonella might regulate RpoS which is important for maintenance of culturablity under stresses.  相似文献   

11.
Swarming, a flagellar-driven multicellular form of motility, is associated with bacterial virulence and increased antibiotic resistance. In this work we demonstrate that activation of the SOS response reversibly inhibits swarming motility by preventing the assembly of chemoreceptor-signaling polar arrays. We also show that an increase in the concentration of the RecA protein, generated by SOS system activation, rather than another function of this genetic network impairs chemoreceptor polar cluster formation. Our data provide evidence that the molecular balance between RecA and CheW proteins is crucial to allow polar cluster formation in Salmonella enterica cells. Thus, activation of the SOS response by the presence of a DNA-injuring compound increases the RecA concentration, thereby disturbing the equilibrium between RecA and CheW and resulting in the cessation of swarming. Nevertheless, when the DNA-damage decreases and the SOS response is no longer activated, basal RecA levels and thus polar cluster assembly are reestablished. These results clearly show that bacterial populations moving over surfaces make use of specific mechanisms to avoid contact with DNA-damaging compounds.  相似文献   

12.
13.
14.
Salmonella enterica is a facultative intracellular pathogen residing in a unique host cell‐derived membrane compartment, termed Salmonella‐containing vacuole or SCV. By the activity of effector proteins translocated by the SPI2‐endoced type III secretion system (T3SS), the biogenesis of the SCV is manipulated to generate a habitat permissive for intracellular proliferation. By taking control of the host cell vesicle fusion machinery, intracellular Salmonella creates an extensive interconnected system of tubular membranes arising from vesicles of various origins, collectively termed Salmonella‐induced tubules (SIT). Recent work investigated the dynamic properties of these manipulations. New host cell targets of SPI2‐T3SS effector proteins were identified. By applying combinations of live cell imaging and ultrastructural analyses, the detailed organization of membrane compartments inhabited and modified by intracellular Salmonella is now available. These studies provided unexpected new details on the intracellular environments of Salmonella. For example, one kind of SIT, the LAMP1‐positive Salmonella‐induced filaments (SIF), are composed of double‐membrane tubules, with an inner lumen containing host cell cytosol and cytoskeletal filaments, and an outer lumen containing endocytosed cargo. The novel findings call for new models for the biogenesis of SCV and SIT and give raise to many open questions we discuss in this review.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号