首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irradiation with ultraviolet (u.v.) light (71 J/m2) reduced the viable count of suspenrsions of Serratia marcescens , grown in a glycerol-salts defined medium, to five in 104 cells. Subsequent incubation of irradiated cells in hydrogen peroxide failed to decrease the survivors, but u.v. irradiation in the presence of hydrogen peroxide reduced the viable count to fewer than two in 106 cells. Cells grown in defined medium with added iron had more measurable catalase activity and were more resistant to hydrogen peroxide alone and to simultaneous treatment with u.v. irradiation and hydrogen peroxide. Cells grown in a non-defined medium contained little iron and measurable catalase activity but were more resistant to hydrogen peroxide. Treatment with toluene, heat killing or sonication increased the catalase activity detected in all cell suspensions and showed that resistance to hydrogen peroxide and to u.v. irradiation in hydrogen peroxide was related to the total catalase activity within cells.  相似文献   

2.
The effects of ultraviolet (UV) irradiation on the viability of the waterborne triactinomyxon stages of Myxobolus cerebralis were evaluated by vital staining and the infectivity for juvenile rainbow trout Oncorhynchus mykiss. A dose of 1300 mWs cm-2 was required to inactivate 100% of the triactinomyxons held under a static collimated beam of UV as determined by vital staining. Juvenile rainbow trout were protected from infections with M. cerebralis when exposed to 14,000 or 1400 triactinomyxon spores per fish that had been treated with the collimating beam apparatus (1300 mWs cm-2). Among all fish receiving UV-treated triactinomyxons, none had clinical signs of whirling disease, or evidence of microscopic lesions or spores of M. cerebralis after 5 mo at water temperatures of 15 degrees C. In contrast, 100% of the fish receiving the higher dose of untreated triactinomyxons developed clinical signs of whirling disease and both microscopic signs of infection and spores were detected in all of the high and low dose trout receiving untreated triactinomyxon exposures. Two additional trials evaluated the Cryptosporidium Inactivation Device (CID) for its ability to treat flow-through 15 degrees C well water to which triactinomyxons were added over a 2 wk period. CID treatments of a cumulative dose exceeding 64,000 triactinomyxons per fish protected juvenile rainbow from infections with M. cerebralis. Rainbow trout controls receiving the same number of untreated triactinomyxons developed both microscopic lesions and cranial spore concentrations up to 10(4.6) per 1/2 head, although no signs of clinical whirling disease were observed. UV (126 mWs cm-2, collimated beam apparatus) was also effective in killing Flavobacterium psychrophilum, the agent causing salmonid bacterial coldwater disease, as demonstrated by the inability of bacterial cells to grow on artificial media following UV treatment.  相似文献   

3.
Survival, sublethal injury, and recoverability of Escherichia coli, Enterococcus faecalis, Salmonella typhimurium, and Yersinia enterocolitica were investigated by using diffusion chambers over 54 to 56 days of in situ exposure to a polar marine environment (-1.8 degrees C; salinity, 34.5 ppt) at McMurdo Station, Antarctica. Plate counts were used to assess recoverability and injury, whereas direct viable counts (DVCs) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction were utilized to determine substrate responsiveness and respiratory activity, respectively. T90 values (times for 10-fold decreases in numbers of recoverable cells) on nonselective medium were ca. 216 to 259 h for E. coli, S. typhimurium, and Y. enterocolitica and 432 h for E. faecalis. Sublethal injury was greater in populations of indicator bacteria than in pathogens. DVCs, CTC reduction, and plate counts indicated progressive increases in viable but nonculturable cells in E. coli, S. typhimurium, and Y. enterocolitica cultures throughout the 54-day exposure. Forty-eight-day exposure of E. coli, S. typhimurium, and Y. enterocolitica resulted in decreased optimal incubation temperatures for colony formation and inability to form colonies at 37 degrees C. The detection of responsive E. coli, S. typhimurium, and Y. enterocolitica by the DVC and CTC methods remained within 1% of inoculum values during 54 days of exposure, indicating some long-term persistence in the viable-but-nonculturable state. Percentages of respiring E. coli and S. typhimurium increased significantly upon addition of nutrients at all temperatures tested, indicating that nutrient availability rather than temperature limited enteric bacterial activity in this very cold environment. Large nutrient inputs to low-temperature marine environments may thus allow for the long-term persistence of enteric bacteria in a nonrecoverable state.  相似文献   

4.
The influence of the growth delay induced by near u.v. radiation on the SOS response was monitored by comparing the level of sfiA expression by means of a sfiA::lacZ fusion in both a nuvA+ cell and an isogenic nuvA mutant. The mutant lacks 4-thiouridine in its tRNA and does not exhibit the near u.v.-induced growth delay. Although the two strains exhibit similar sfiA induction levels after 254 nm irradiation, their behaviour is different after illumination with near u.v. light, including solar u.v. Inducibility is 10-20 times higher in the nuvA mutant than in the parent strain. Furthermore, pre-illumination with broad band near u.v. light does not affect the 254 nm-induced sfiA response in the mutant but reduces it by a factor of 3-4 in the parent strain. The kinetics of sfiA induction in near u.v.-illuminated nuvA+ cells, whether treated with 254 nm light or not, is unusual and follows the growth curve: only after 50 min is sfiA derepression observed. It can be concluded that (i) near u.v.-induced DNA lesions are able to trigger the SOS response and (ii) the growth delay effect reduces this response, whether triggered by u.v. or near u.v. light. Hence 4-thiouridine in tRNA acts as a built-in antiphotomutagenic 'device' protecting Escherichia coli cells against mutagenesis and the induction of the SOS response by near u.v. light and sunlight.  相似文献   

5.
An investigation of β-galactosidase activity of Escherichia coli strain H10407, under different physiological and environmental conditions, e.g. induced and uninduced osmotic stress, light, etc., was undertaken. In this study E. coli was employed as a model for faecal coliforms in waste water. β-Galactosidase activity was induced by isopropyl-β-D-thiogalactoside (IPTG). Enzyme activity (U cell-1)/cell for sewage bacteria and for induced E. coli was similar, i.e. log U cell-1= -8.5 whereas uninduced E. coli yielded log U cell-1= -12.1. Initial enzyme activity was not dependent on phase of growth of the cell (exponential vs stationary phase) or whether marine or fresh water at the time of initial dilution. However, osmotic change resulted in a decrease in culturable cells, even though enzyme activity remained constant. A significant decrease in the number of culturable bacteria, followed by a decrease in β-galactosidase activity, was observed after exposure of cells to visible light radiation. It is concluded that β-galactosidase enzyme is retained in viable but non-culturable E. coli. Furthermore, β-galactosidase appears to offer a useful and rapid (25 min) measure of the viability of faecal coliforms, and therefore, of the water quality of bathing and shellfishing areas.  相似文献   

6.
Abstract: The physiological state of introduced Flavobacterium strain P25 cells was determined in starvation cultures, in bulk soil, and in the rhizosphere of wheat using direct viable counts (DVC; based on cell elongation after use of nalidixic acid and substrate addition, resulting in a potential activity measurement) and the redox dye 5-cyano-2, 3-ditolyl tetrazolium chloride (CTC; based on respiration without substrate additions, resulting in an in situ activity measurement). Both methods clearly demonstrated that the metabolic activity of Flavobacterium P25 cells decreased during starvation, followed by increased activity after amendment with substrate. This confirmed the applicability of DVC and CTC methods to Flavobacterium P25. Both DVC and CTC methods showed that the percentage of active cells in an introduced Flavobacterium P25 population in rhizosphere soil was lower than that in bulk soil in the first 1–2 weeks after planting wheat seedlings. After two weeks, the percentage of metabolically active cells in the P25 population in rhizosphere soil was higher than in bulk soil. Since different aspects of cellular physiology are measured when applying DVC and CTC, the impact of variations in environmental factors on the metabolic state of introduced strains may be monitored closely by these methods.  相似文献   

7.
A kill of 99.99% was obtained in cell suspensions of Escherichia coli and Streptococcus faecalis by incubation with hydrogen peroxide 1.0% (w/v) for 75 and 180 min respectively. The same kill was produced by 30 s irradiation with ultraviolet (u.v.) light in the presence of hydrogen peroxide 1.0% (w/v). This simultaneous treatment with u.v. and hydrogen peroxide produced a synergistic kill at least 30-fold greater than that produced by irradiation of cell suspensions of Esch. coli with or without subsequent incubation with hydrogen peroxide.  相似文献   

8.
To evaluate the effectiveness of UV irradiation in inactivating Cryptosporidium parvum oocysts, the animal infectivities and excystation abilities of oocysts that had been exposed to various UV doses were determined. Infectivity decreased exponentially as the UV dose increased, and the required dose for a 2-log(10) reduction in infectivity (99% inactivation) was approximately 1.0 mWs/cm(2) at 20 degrees C. However, C. parvum oocysts exhibited high resistance to UV irradiation, requiring an extremely high dose of 230 mWs/cm(2) for a 2-log(10) reduction in excystation, which was used to assess viability. Moreover, the excystation ability exhibited only slight decreases at UV doses below 100 mWs/cm(2). Thus, UV treatment resulted in oocysts that were able to excyst but not infect. The effects of temperature and UV intensity on the UV dose requirement were also studied. The results showed that for every 10 degrees C reduction in water temperature, the increase in the UV irradiation dose required for a 2-log(10) reduction in infectivity was only 7%, and for every 10-fold increase in intensity, the dose increase was only 8%. In addition, the potential of oocysts to recover infectivity and to repair UV-induced injury (pyrimidine dimers) in DNA by photoreactivation and dark repair was investigated. There was no recovery in infectivity following treatment by fluorescent-light irradiation or storage in darkness. In contrast, UV-induced pyrimidine dimers in the DNA were apparently repaired by both photoreactivation and dark repair, as determined by endonuclease-sensitive site assay. However, the recovery rate was different in each process. Given these results, the effects of UV irradiation on C. parvum oocysts as determined by animal infectivity can conclusively be considered irreversible.  相似文献   

9.
Membrane-specific drugs such as procaine and chlorpromazine have been shown to inhibit excision repair of DNA in u.v.-irradiated E. coli. One possible mechanism is that, if association of DNA with the cell membrane is essential for excision repair, this process may be susceptible to drugs affecting the structure of cell membranes. We examined the effect of phenethyl alcohol, which is a membrane-specific drug and known to dissociate the DNA-membrane complex, on excision repair of DNA in u.v.-irradiated E. coli cells. The cells were irradiated with u.v. light and then held at 30 degrees C in buffer (liquid-holding) in the presence or absence of phenethyl alcohol. It was found that phenethyl alcohol inhibits the liquid-holding recovery in both wild-type and recA strains, corresponding to its dissociating action on the DNA-membrane complex. Thus, the association of DNA with cell membrane is an important factor for excision repair in E. coli. Procaine did not show the dissociating effect, suggesting that at least two different mechanisms are responsible for the involvement of cell membrane in excision repair of DNA in E. coli.  相似文献   

10.
AIMS: To compare the inactivation of feline calicivirus (FCV) (a surrogate for Norovirus, NV) with the reduction of a bacterial water quality indicator (Escherichia coli), a human enteric virus (poliovirus) and a viral indicator (MS2, FRNA bacteriophage), following the disinfection of wastewaters. METHODS AND RESULTS: Bench-scale disinfection experiments used wastewater (sterilized by gamma-irradiation) seeded with laboratory-cultured organisms. Seeded primary effluent was treated with different doses of applied free chlorine (8, 16 and 30 mg l(-1)). FCV and E. coli were easily inactivated by >4 log10, within 5 min with a dose of 30 mg l(-1) of applied chlorine. Poliovirus was more resistant and a reduction of 2.85 log10 was seen after 30 min, MS2 was the most resistant organism (1 log10 inactivation). In further experiments seeded secondary effluent was treated with different doses of u.v. irradiation. To achieve a 4-log10 reduction of E. coli, FCV, poliovirus and MS2 doses of 5.32, 19.04, 27.51 and 62.50 mW s cm(-2), respectively, were required. CONCLUSIONS: Feline calicivirus and E. coli seeded in primary wastewater were very susceptible to chlorination compared with poliovirus and MS2. In contrast, FCV seeded in secondary wastewater was more resistant to u.v. irradiation than E. coli but more sensitive than poliovirus and MS2. SIGNIFICANCE AND IMPACT OF THE STUDY: FRNA phage was more resistant to inactivation than all the viruses tested. This suggests FRNA phage would be a useful and conservative indicator of virus inactivation following disinfection of wastewaters with chlorination or u.v. irradiation.  相似文献   

11.
The effect of ultraviolet irradiation on the growth and occurrence of legionella and other heterotrophic bacteria in a circulating cooling water system was studied. Water of the reservoir was circulated once in 28 h through a side-stream open channel u.v. radiator consisting of two lamps. Viable counts of legionellas and heterotrophic bacteria in water immediately after the u.v. treatment were 0—12 and 0·7—1·2% of those in the reservoir, respectively. U.v. irradiation increased the concentration of easily assimilable organic carbon. In the u.v. irradiated water samples incubated in the laboratory the viable counts of heterotrophic bacteria reached the counts in reservoir water within 5 d. The increase in viable counts was mainly due to reactivation of bacterialcells damaged by u.v. light, not because of bacterial multiplication. Despite u.v. irradiation the bacterial numbers in the reservoir water, including legionellas, did not decrease during the experimental period of 33 d. The main growth of bacteria in the reservoir occurred in biofilm and sediment, which were never exposed to u.v. irradiation.  相似文献   

12.
Changes in the outer membrane subproteome of Escherichia coli along the transition to the viable but nonculturable state (VBNC) were studied. The VBNC state was triggered by exposure of E. coli cells to adverse conditions such as aquatic systems, starvation, suboptimal temperature, visible light irradiation and seawater. The subproteome, obtained according to Molloy et al ., was analysed at the beginning of exposure (inoculum, phase 1), after a variable exposure time (95% of population culturable, phase 2) and when populations were mainly in the VBNC state (95% of cells VBNC, phase 3). Proteome changes were dependent on adverse conditions inducing the transition and were detected mainly in phase 2. The permanence of E. coli cells in seawater under illumination conditions entailed a dramatic rearrangement of the outer membrane subproteome involving 106 new spots, some of which could be identified by peptide fingerprinting. However, proteins exclusive to the VBNC state were not detected.  相似文献   

13.
The Siberian permafrost is an extreme, yet stable environment due to its continuously frozen state. Microbes maintain membrane potential and respiratory activity at average temperatures of -10 to -12 degrees C that concentrate solutes to an a (w) = 0.90 (5 osm), The isolation of viable Psychrobacter arcticus sp. 273-4 and Exiguobacterium sibiricum sp. 255-15 from ancient permafrost suggests that these bacteria have maintained some level of metabolic activity for thousands of years. Permafrost water activity was simulated using (1/2) TSB + 2.79 m NaCl (5 osm) at and cells were held at 22 and 4 degrees C. Many cells reduced cyano-tetrazolium chloride (CTC) indicating functioning electron transport systems. Increased membrane permeability was not responsible for this lack of electron transport, as more cells were determined to be intact by LIVE/DEAD staining than were reducing CTC. Low rates of aerobic respiration were determined by the slope of the reduced resazurin line for P. arcticus, and E. sibiricum. Tritiated leucine was incorporated into new proteins at rates indicating basal level metabolism. The continued membrane potential, electron transport and aerobic respiration, coupled with incorporation of radio-labeled leucine into cell material when incubated in high osmolarity media, show that some of the population is metabolically active under simulated in situ conditions.  相似文献   

14.
This study addresses the responses to starvation and osmotic stress of Pseudomonas fluorescens isolated from spoiled fish. Culturability and viability of stressed cells were determined. Cells maintaining an active electron transport system were considered to be viable and this activity was assessed by the ability of the cells to reduce the 5-cyano-2,4-ditolyl tetrazolium chloride (CTC) to fluorescent CTC-formazan. Cells starved of carbon maintained high culturability and a high proportion of the cells were capable of reducing CTC during short-time (up to 5 d) experiments. ATP concentrations were lower in carbon-starved than in log-phase cells but the measured levels suggested that metabolic activity was retained. Carbon-starved cells developed an increased heat resistance and prolonged starvation resulted in further protection. Viable, but non-culturable cells were found during heat challenge implying that culture methods underestimate the recovery potential of these cells. Osmotically-stressed Ps. fluorescens maintained a high viability, whereas culturability was rapidly lost. In contrast to starved cells, no protection against a subsequent heat challenge was found in osmotically-stressed (4 or 18 h) cells, but an increased salinity of the heating menstruum alone resulted in elevated heat resistance.  相似文献   

15.
The effects of starvation and salinity on the physiology of Salmonella typhimurium were investigated in a microcosm study. The physiological changes were monitored by using fluorochromes dyes such as DAPI (4',6-diamidino-2-phenylindole) for evaluation of the genomic content, CTC (5-cyano-2,3-ditolyl tetrazolium chloride) for respiratory activity and syto 9 and propidium iodide for cytoplasmic membrane damages. The metabolic activity of the cellular population was assessed with the method of Kogure (direct viable count), to enumerate the substrate-responsive cells. These different staining procedures were objectively analysed by an image analysis system. This paper describes the progressive alteration of Salmonella typhimurium physiology under salinity and starvation conditions.  相似文献   

16.
The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.  相似文献   

17.
Survival, electron transport system (ETS) activity and the activity of NADH and succinate dehydrogenase of Escherichia coli ML30 were studied under starvation stress at different temperatures in a filtered-autoclaved lake water microcosm. ETS activity in E. coli declined rapidly at 30 degrees C but more slowly at 4 degrees and 15 degrees C over a 20 d starvation period. The decrease in ETS activity in E. coli only started after 6 d of incubation at 4 degrees C and 15 degrees C. Viability of E. coli, as determined by plate counts, declined faster at 37 degrees C than at the other temperatures and remained highest at 4 degrees C in filtered-autoclaved lake water. There was also a significant cell size reduction at 37 degrees C in filtered-autoclaved lake water but not at 4 degrees C. ETS activity after up to 16 d of starvation increased after the addition of nutrient broth to the filtered-autoclaved lake water at 15 degrees C and 30 degrees C suggesting that cells were still able to respond to nutrients, even after prolonged starvation. The response to the addition of nutrient broth, however, declined with the length of the starvation period. The activity of both succinate and NADH dehydrogenase declined over a 13 d starvation period. The loss of activity was fastest at 37 degrees C compared to lower incubation temperatures but even at 4 degrees C, a significant proportion of the activity was lost over the 13 d period.  相似文献   

18.
Experiments were performed to examine the role of cyclobutyl pyrimidine dimers in the process of mutagenesis by ultraviolet (u.v.) light. Lambda phage DNA was irradiated with u.v. and then incubated with an Escherichia coli photoreactivating enzyme, which monomerizes cyclobutyl pyrimidine dimers upon exposure to visible light. The photoreactivated DNA was packaged into lambda phage particles, which were used to infect E. coli uvr- host cells that had been induced for SOS functions by ultraviolet irradiation. Photoreactivation removed most toxic lesions from irradiated phage, but did not change the frequency of induction of mutations to the clear-plaque phenotype. This implies that cyclobutyl pyrimidine dimers can be lethal, but usually do not serve as sites of mutations in the phage. The DNA sequences of mutants derived from photoreactivated DNA showed that almost two-thirds (16/28) were transitions, the same fraction found for u.v. mutagenesis without photoreactivation. These results show that in this system, the lesion inducing transitions (the major type of u.v.-induced mutation) is not the cyclobutyl pyrimidine dimer; a strong candidate for a mutagenic lesion is the Pyr(6-4)Pyo photoproduct. On the other hand, photoreactivation of SOS-induced host cells before infection with u.v.-irradiated phage reduced mutagenesis substantially. In this case, photoreversal of cyclobutyl dimers serves to reduce expression of the SOS functions that are required in the process of targeted u.v. mutagenesis.  相似文献   

19.
U.v. radiation is directly mutagenic for the single-stranded DNA parvovirus H-1 propagated in human cells. Mutation induction in the progeny of u.v.-irradiated virus increased linearly with the dose and could be ascribed neither to an increased number of rounds of viral replication nor to the indirect activation of an inducible cellular mutator activity by the u.v.-damaged virus. The level of mutagenesis among the descendants of both unirradiated and u.v.-damaged H-1 was enhanced if the host cells had been exposed to sublethal doses of u.v. light before infection. This indirect enhancement of viral mutagenesis in pre-irradiated cells was maximal at multiplicities lower than 0.2 infectious particles/cell. The frequency of mutations resulting from cell pre-irradiation was only slightly higher for u.v.-irradiated than for intact virus. Thus, the induced cellular mutator appeared to be mostly untargeted in the dose range given to the virus. U.v.-irradiation of the cells also enhanced the mutagenesis of u.v.-irradiated herpes simplex virus, a double-stranded DNA virus ( Lytle and Knott , 1982).  相似文献   

20.
(1/2,5,6)-2-(3-Azibutylthio)-5,6-epoxy-3-cyclohexen-1-ol (1) was synthesized and was found to irreversibly inactivate beta-D-galactosidase (Escherichia coli). The inactivation was prevented by the presence of isopropyl 1-thio-beta-D-galactopyranoside (IPTG). The vinyloxirane group of 1 reacted with water and other nucleophiles, especially at higher pH values. Reaction of 1 with beta-D-galactosidase was slow enough so that a competitive-inhibition constant (Ki) of 29mM could be determined. The inhibition constant for (1,2/3,6)-6-(3-azibutylthio)-2-bromo-4-cyclohexene-1,3-diol (2), the precursor of the bireactant inhibitor 1, was 13 mM, while that of (1,3/2,4)-3-(3-azibutylthio)-5-cyclohexene-1,2,4-triol (3), the product formed when the reactant is allowed to react with water, was 23mM. After irradiation by light, beta-D-galactosidase that had initially been treated with the bireactant compound and then digested with trypsin, showed a new pattern of elution from h.p.l.c., indicating that there was reaction at two regions of the beta-D-galactosidase molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号