首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of peroxidatic activity of catalase in eggs of the sea urchins Hemicentrotus pulcherrimus and Temnopleurus toreumaticus was investigated by the ultrastructural cytochemical techniue and by biochemical assay on homogenates of eggs from before fertilization to the 2-cell stage. Biochemical assays showed that the unfertilized eggs had strong catalase activity whereas fertilized eggs had weak activity owing to the rapid decrease of activity after fertilization. The activity did not change from immediately after fertilization to the 2-cell stage. Cytochemical examination showed that the peroxidatic activity of catalase was mainly localized in the lamellae in the cortical granules. Disintegrated cortical granules with no lamellae and substances in the perivitelline space derived from breakdown of the cortical granules had no peroxidatic activity of catalase.  相似文献   

2.
Earlier work has demonstrated that hamster eggs that do not release a second polar body after fertilization in vitro lack a block to polyspermy (Stewart-Savage and Bavister, 1987: Gamete Res 18:333–338). Since polar body release requires microfilaments, the involvement of microfilaments in cortical granule exocytosis was examined. When hamster eggs were treated with cytochalsin B (CB) for 1 hr and then coincubated with sperm for 90 min, there was a dose-dependent increase in both the percentage of eggs with more than one sperm penetrating the zona pellucida and the mean number of sperm that penetrated the zona, with a maximum effect at 20 μg CB/ml (100% polypenetration, 3.0 ± 0.3 sperm/egg). Cytochalasin-treated eggs retained 85% of their cortical granules 55 min after insemination, as compared to unfertilized eggs. Longer time periods did not result in any further reduction. As seen with the scanning confocal microscope, an extensive microfilament network was present in the cortex of untreated eggs, with the cortical granules located within this cortical network. The cortical microfilament network was highly reduced in CB-treated eggs. When viewed with the electron microscope, the same number of cortical granules were located next to the plasma membrane in both cytochalasin-treated and untreated, unfertilized eggs. These data indicate that intact microfilaments are required for normal cortical granule exocytosis in the hamster egg, but the role of the microfilaments in exocytosis is unresolved. Mol. Reprod. Dev. 47:334–340, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Cortical granules were demonstrated, in two successive Epon sections (0.7 μm thick) stained with PAS reagent and the triple staining method respectively, to persist beyond the cleavage stages of development to the tadpole stages in Xenopus laevis. They were also examined by electron microscope. The granules which are similar both cytochemically and ultrastructurally to the cortical granules of the unfertilized eggs were observed not only in germ cells, pPGCs and PGCs, but also in somatic cells at all the stages examined. An ultrastructural similarity between the granules found in the PGCs at the tadpole stages and chromatoid body was discussed.  相似文献   

4.
Scanning microscopy and transmission electron microscopy of sectioned specimens and freeze-fracture replicas revealed the presence of slightly elevated regions, approximately one-fourth to one-half the diameter of microvilli, which were situated along the surface of unfertilized Arbacia eggs. These modifications of the surface of the egg were observed in areas occupied by cortical granules and were greatly reduced in number following the cortical granule reaction. Few such modifications were present in immature and urethane-treated ova, in which cortical granules were located in regions of the egg other than the cortex. Freeze-fracture replicas of unfertilized eggs revealed a significantly higher density of intramembranous particles within the plasmalemma when compared to replicas of the membrane surrounding cortical granules. Areas characteristic of the cortical granule membrane, i.e., sparsely laden with particles, were not observed within the plasmalemma of the fertilized egg. Hence, following its fusion with the egg plasma membrane there is a dramatic reorganization in particle distribution of the membrane derived from cortical granules.  相似文献   

5.
Eggs, embryos and larvae of the intertidal sea anemone Actinia fragacea were obtained from spontaneous spawnings in the laboratory and have been examined by scanning and transmission electron microscopy. The eggs average 150 micron in diameter and are covered by tufts of large microvilli known as cytospines, but are not surrounded by a jelly layer or a vitelline coat. The cortical layer of the egg contains large numbers of dense, homogeneous cortical granules. The surface layers of cleavage and blastula stage embryos are similar in composition to those of unfertilized eggs in that the cytospine tufts remain intact and the number of cortical granules remains apparently undiminished. No major discharge of cortical granules indicative of a cortical reaction can have occurred. During gastrulation, many embryos take up large numbers of sperm by a process resembling phagocytosis. These sperm undergo breakdown in the superficial regions of the embryos. The cortical granules persist well into larval life, and their function is unknown.  相似文献   

6.
Sea urchin (Arbacia punctulata) eggs and zygotes were treated with filipin in an effort to examine changes in membrane sterols at fertilization. The plasma membrane of treated unfertilized eggs possessed numerous filipin/sterol complexes, while fewer complexes were associated with membranes delimiting cortical granules, demonstrating that the plasmalemma is relatively rich in β-hydroxysterols in comparison to cortical granule membrane. Following fusion with the plasmalemma, membrane formerly delimiting cortical granules underwent a dramatic alteration in sterol composition, as indicated by a rapid increase in the number of filipin/sterol complexes. In contrast, portions of the zygote plasma membrane, derived from the plasmalemma of the unfertilized egg, displayed little or no change in filipin/sterol composition. Other than regions of the plasma membrane engaged in endocytosis, the plasmalemma of the zygote possessed a homogeneous distribution of filipin/sterol complexes and appeared similar to that of the unfertilized egg. These results demonstrate that following its fusion with the egg plasmalemma, membranes, formerly delimiting cortical granules, undergo a dramatic alteration in sterol composition. Changes in the localization of filipin/sterol complexes are discussed in reference to alterations in egg plasmalemmal function at fertilization.  相似文献   

7.
Fertilized and unfertilized eggs of Cynops pyrrhogaster were examined by light and electron microscopy. In fertilized eggs that have just been laid, there are numerous small cytoplasmic patches free of granules in the pigmented layer of the animal hemisphere. Many of these granule-free cytoplasmic islets gradually grow out subcortically from the pigmented layer and fuse to form a subcortical layer of yolk-free cytoplasm of varying thickness by the time of the first cleavage division. The cytoplasmic islets are present in 100% of the fertilized eggs, but not in unfertilized eggs. Electron microscopic observations showed that the cytoplasmic islets contain tubules and that development of a complex system of cortical tubules constitutes the basis of the early growth of the cytoplasmic islets. The cortical tubules are transient structures and are no longer observable a few hours after the eggs are laid. These phenomena are considered to be a response of the egg to the fertilization stimulus.  相似文献   

8.
To detect structural changes following UV irradiation in the “germinal plasm,” ultrastructure of the “germinal plasm” was studied in normal and UV-irradiated eggs of Xenopus laevis at the following stages: prior to fertilization, early 2-cell, 32-cell, and late blastula. It was revealed that ultrastructural features of the “germinal plasm” were essentially common between Xenopus laevis and Rana pipiens. That is, the “germinal plasm” is composed primarily of a large aggregation of mitochondria and distinctive electron dense bodies (germinal granules). Irregularly shaped cylinderlike granules (giant germinal granules), having the same internal characteristics as the germinal granules, were found in the “germinal plasm” of all eggs examined.Comparison between normal and UV-irradiated eggs has demonstrated that UV irradiation causes swelling and vacuolation of mitochondria and fragmentation of germinal granules. The suggestion is that the integrity of certain UV-sensitive factor(s), which is involved in maintaining normal structure of germinal granules, is indispensable for the determination of the primordial germ cells.  相似文献   

9.
The sea urchin embryo hyaline layer is an extracellular investment which develops within 20 min postinsemination of Strongylocentrotus purpuratus eggs and contains a single calcium-precipitable subunit termed hyalin. Other ultrastructural and biochemical studies have suggested that hyalin is localized in the cortical granules. We have examined the hypothesis that hyalin is a cell surface protein of the unfertilized egg using vectorial lactoperoxidase-catalyzed radioiodination. Extracts of labeled unfertilized eggs contained several labeled proteins, one of which was electrophoretically indistinguishable from authentic hyalin isolated by each of three different procedures. Pronase digestion of labeled unfertilized eggs removed 75% of the label, but the labeled hyalin-like molecule was still present in whole cell extracts. Upon insemination, pronase-digested, labeled eggs formed an apparently normal hyaline layer and whole cell extracts contained the labeled hyalin-like molecule. Denuded, labeled eggs were inseminated and the hyaline layer was selectively solubilized in calcium- and magnesium-free artificial seawater. Labeled hyalin was purified from this crude hyalin preparation to constant specific radioactivity and apparent homogeneity as shown by gel electrophoresis. These data strongly suggest that hyalin or a precursor is a cell surface protein of the unfertilized sea urchin egg.  相似文献   

10.
The three-dimensional organization of cortices isolated from unfertilized and fertilized Strongylocentrotus purpuratus eggs has been examined by several techniques of light and electron microscopy. It has been found that when moderate shear forces are used, the isolated unfertilized egg cortex, in addition to cortical granules, contains acidic vesicles and an elaborate network of rough endoplasmic reticulum. This network provides a physical link between the cell surface and several kinds of cytoplasmic organelles (mitochondria, yolk granules, acidic vesicles) which are retained as part of the isolated cortex when gentle shear forces are applied. Furthermore a good visualization of actin in the cortex is provided: it is present as short filaments and mostly within the stubby microvilli of the egg. Finally, it has been noted that plaques exist on the inside face of the plasma membrane ready to assemble into typical clathrin coats that prefigure the burst of coated vesicle endocytosis that takes place after fertilization. The cortex isolated soon after fertilization is shown to contain coated pits and a scaffolding of filaments (mostly actin) in which many acidic vesicles are embedded.  相似文献   

11.
Trypsin-like protease in sea urchin eggs is thought to reside in cortical granules since it is secreted at fertilization and has been isolated with cortical granule fractions from unfertilized eggs. A 35-kDa serine protease has been purified from Strongylocentrotus purpuratus eggs by soybean trypsin inhibitor-affinity chromatography. For this report the protease was localized by immunocytochemistry before and after fertilization, and its potential biological activity was examined by application of the isolated enzyme to the unfertilized egg surface. The protease was localized on sections by immunofluorescence and immunoelectron microscopy, and was found to reside in the spiral lamellae of S. purpuratus cortical granules and in the electron-dense stellate core of Arbacia punctulata granules. At fertilization the enzyme is secreted into the perivitelline space and accumulates only very briefly between the hyaline layer and the nascent fertilization envelope. Shortly thereafter the enzyme is lost from the perivitelline space and immunological reactivity is no longer associated with the egg surface. The 35-kDa cortical granule protease has vitelline delaminase activity but does not appear to destroy vitelline envelope sperm receptors as judged by the fertility of protease-treated eggs.  相似文献   

12.
Changes in the distribution and organizational state of actin in the cortex of echinoderm eggs are believed to be important events following fertilization. To examine the initial distribution and form of actin in unfertilized eggs, we have adapted immunogold-labeling procedures for use with eggs of Strongylocentrotus purpuratus. Using these procedures, as well as fluorescence microscopy, we have revealed a discrete 1-micron-thick concentrated shell of actin in the unfertilized egg cortex. This actin is located in the short surface projections of unfertilized eggs and around the cortical granules in a manner that suggests it is associated with the cortical granule surface. The actin in the short surface projections appears to be organized into filaments. However, most if not all of the actin surrounding the cortical granules is organized in a form that does not bind phalloidin, even though it is accessible to actin antibody. The lack of phalloidin binding is consistent with either the presence of nonfilamentous actin associated with the cortical granules or the masking of actin-filament phalloidin-binding sites by some cellular actin-binding component. In addition to the concentrated shell of actin found in the cortex, actin was also found to be concentrated in the nuclei of unfertilized eggs.  相似文献   

13.
The peripheral cytoplasm of the unfertilized sea urchin egg contains approximately 18,000 cortical granules. These granules remain monolayered within the normal boundaries of the cortex when the egg is centrifuged at forces sufficient to stratify other intracellular inclusions. Exposure of unfertilized eggs to the microfilament disrupting agent, cytochalasin B (CB) causes the granules to rearrange into several layers and occasionally to undergo exocytosis or break down in situ. When these eggs are centrifuged, the cortical granules are dislodged from the cortex and migrate centrifugally among the densest intracellular components. In addition, cytoplasmic inclusions, which normally are excluded from the cortex, impinge directly upon the egg plasma membrane in CB-treated, centrifuged eggs. These results are consistent with the existence of a microfilamentous network which confines the cortical granules within and excludes other intracellular inclusions from the cortex of the unfertilized egg.  相似文献   

14.
Immunoelectron microscopic studies demonstrated cortical granule lectins (CGLs) in coelomic, unfertilized and fertilized eggs of Xenopus laevis . An antiserum raised against purified cortical granule lectin 1 specifically reacted with the CGLs in immunoblotting and agar diffusion tests. When ultrathin sections were treated with the antiserum and protein A-gold solution, gold particles, indicating antigenic sites, were seen over cortical granules of coelomic and unfertilized eggs, and over the perivitelline space, the vitelline coat and the condensed region of the fertilization layer of fertilized eggs. The pre-fertilization layer immediately adjacent to the outer margin of the vitelline coat in unfertilized eggs was free from gold particles. These observations suggest that released CGLs permeate through the vitelline coat of fertilized eggs and interact with the pre-fertilization layer mainly at the outer margin of the vitelline coat, resulting in formation of the fertilization layer which acts as a block to polyspermy.  相似文献   

15.
The endogenous lectin of Xenopus laevis oocytes, unfertilized eggs, and blastula-stage embryos was immunohistochemically localized using a highly specific antiserum. Each tissue was examined with several techniques, including paraformaldehyde or glutaraldehyde fixation, frozen or plastic sections, and immunofluorescence or immunoperoxidase staining. In oocytes and unfertilized eggs, lectin was detected in association with yolk platelets, cortical granules, and the vitelline envelope. In embryos, cortical granules had disappeared and lectin was found in the cleavage furrows between the embryonic cells. The distribution of the lectin suggests that it plays more than one role in this developing system.  相似文献   

16.
Formation and structure of the fertilization envelope in Xenopus laevis   总被引:19,自引:0,他引:19  
This paper reports the morphological events that occur when the vitelline envelope (VE) of an unfertilized egg of Xenopus laevis is transformed into the fertilization envelope (FE) surrounding the zygote. The VE is about 1 μm thick and is composed of an interlacing network of small filaments. The FE is constructed from the VE plus an electron-dense layer (fertilization layer), about 2–6 μm thick, on the outer surface of the VE, i.e., at the interface between the VE and the innermost jelly-coat layer. The fertilization layer is a stable component of the FE and is not removed by mercaptan solutions used to dejelly eggs. The events of FE formation were observed in the light and electron microscopes after dejellied eggs were activated by pricking. The FE is established when material from the cortical granules is extruded into the perivitelline space. The cortical granule material passes through the VE as the envelope lifts away from the egg surface. Some cortical granule material deposits in the interstices of the VE, but most of it forms the fertilization layer on the outer surface of the envelope. The cortical reaction is completed about 8–9 min after addition of sperm when eggs are fertilized in vitro.  相似文献   

17.
A trypsin-like proteinase was localized within a single subcellular compartment of unfertilized Strongylocentrotus purpuratus eggs, the cortical granules. Homogenates of eggs were fractionated by rate-zonal centrifugation. Enzymatic markers were used to determine the distribution of mitochondria (cytochrome oxidase), yolk platelets (acid nitrophenyl phosphatase), and cortical granules (β-1, 3-glucanase) in the sucrose density gradient. A bimodal distribution pattern was obtained for aryl esterase activity (substrate: β-naphthyl acetate), with one peak in the microsomal and the other in the cortical granule fractions. The cortical granule enzyme was characterized as a trypsin-like proteinase, since it also hydrolyzed another typical tryptic substrate α-N-benzoyl-l-arginine ethyl ester and was completely inactivated by soybean trypsin inhibitor (SBTI). The aryl esterase activity in the microsomal fractions was not inhibited by SBTI, while 50% of the total aryl esterase activity in the original egg homogenate was inactivated by SBTI. The identity of the enzyme(s) responsible for the aryl esterase activity associated with the microsomal particles is unknown at present.The cortical granule proteinase functions in the elevation of the fertilization membrane and establishment of the block to polyspermy at fertilization. Arbacia punctulata eggs inseminated in the presence of trypsin inhibitors, SBTI or tosyl lysine chloromethyl ketone (TLCK), failed to elevate normal fertilization membranes and became heavily polyspermic.On the basis of these results and observations made by other investigators with a wide variety of biological systems, it is proposed that trypsin-like proteinases function in the discharge of secretory granules from all types of cells.  相似文献   

18.
Unfertilized eggs of many species of animals contain cortical granules, which are specialized secretory granules that upon fertilization release their contents from the egg. The unfertilized eggs of the sea urchin, Strongylocentrotus purpuratus, contain cortical granules that all display an identical and elaborate internal morphology. It has been assumed that they all contain identical components. In this report we present immunocytochemical data which indicate that the cortical granule population of S. purpuratus eggs is heterogeneous. Two monoclonal antibodies are shown to react to the spiral lamellae region of approximately 20% of the cortical granules, implying that the contents of the reactive granules differ from the contents of the majority of the population. An egg protein of greater than 320 kDa is recognized by the antibody. These antibodies also stain a 130-kDa protein expressed on the surface of primary mesenchyme cells in later development. Both antibodies recognize a post-translational modification of this protein. This suggests that an antigenically similar epitope is present both on the 130-kDa primary mesenchyme cell-specific protein and in the cortical granules. To determine if the primary mesenchyme and cortical granule proteins are related, a fusion protein antibody specific for a region of the 130-kDa protein was used to stain unfertilized eggs. This antibody did not stain cortical granules. Thus, 20% of the cortical granules contain a molecule that has an epitope antigenically similar to the post-translational modification recognized in primary mesenchyme cells by the monoclonal antibodies.  相似文献   

19.
The fertilized sea urchin egg is invested by the hyaline layer, a thick extracellular coat which is necessary for normal development. On the basis of ultrastructural studies and the fact that hyalin is released during the time of the cortical reaction, it has been generally accepted that hyalin is derived from the cortical granules. However, this has never been proven definitely, and recently, it has been reported that hyalin is a membrane and/or cell surface protein. To determine where hyalin is stored, we carried out an ultrastructural immunocytochemical localization of hyalin in the unfertilized egg. Hyalin purified from isolated hyaline layers was used to immunize rabbits. Antisera so obtained were shown to be hyalin specific following absorption with a combination of sea urchin proteins. Immunocytochemical localizations were carried out on sections of Epon-embedded material using protein A-coated gold particles as an antibody marker. Our results demonstrate that, prior to fertilization, hyalin is stored in the homogeneous component of the cortical granule in Strongylocentrotus droebachiensis and Strongylocentrotus purpuratus. Labeling of small cortical vesicles in both unfertilized and fertilized eggs, suggests that these vesicles may contain a secondary reservoir of hyalin.  相似文献   

20.
The divalent ionophore A23187 can induce a non-propagated discharge of cortical granules in sea urchin eggs resulting in the elevation of partial fertilization membranes. This occurs when unfertilized eggs (1) partially overlap the margin of a solid film of the ionophore; (2) touch a Sephadex bead previously infiltrated with the ionophore; or (3) are exposed to solutions of ionophore for short periods (15–30 sec). These results demonstrate that the release of cortical granules does not automatically induce the discharge of neighboring granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号