首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
2.
Lycopene, which is the predominant carotenoid in tomatoes and tomato-based foods, may protect humans against various cancers. Effects of lycopene on the adhesion, invasion, migration, and growth of the SK-Hep1 human hepatoma cell line were investigated. Lycopene inhibited cell growth in dose-dependent manners, with growth inhibition rates of 5% and 40% at 0.1 microM and 50 microM lycopene, respectively, after 24 hrs of incubation. Similarly, after 48 hrs of incubation, lycopene at 5 microM and 10 microM decreased the cell numbers by 30% and 40%, respectively. Lycopene decreased the gelatinolytic activities of both matrix metalloproteinase (MMP)-2 and MMP-9, which were secreted from the SK-Hep1 cells. Incubation of SK-Hep1 cells with 110 microM of lycopene for 60 mins significantly inhibited cell adhesion to the Matrigel-coated substrate in a concentration-dependent manner. To study invasion, SK-Hep1 cells were grown either on Matrigel-coated Transwell membranes or in 24-well plates. The cells were treated sequentially for 24 hrs with lycopene before the start of the invasion assays. Cell growth and death were assessed under the same conditions. The invasion of SK-Hep1 cells treated with lycopene was significantly reduced to 28.3% and 61.9% of the control levels at 5 microM and 10 microM lycopene, respectively (P < 0.05). In the migration assay, lycopene-treated cells showed lower levels of migration than untreated cells. These results demonstrate the antimetastatic properties of lycopene in inhibiting the adhesion, invasion, and migration of SK-Hep1 human hepatoma cells.  相似文献   

3.
The laver (Porphyra tenera), red seaweed, has been reported to have anticancer activity, but little is known about its molecular mechanisms of action. The objective of this study was to determine the effects of laver extract on cancer cell proliferation, invasion, and metastasis in SK-Hep1 cells using migration and invasion assays. We also investigated the relationship of MMP-2/-9 and TIMP-1/-2 expression at both the protein and gene level in SK-Hep1 human hepatoma carcinoma cells after laver extract treatment. Laver extract inhibited cancer cell growth in a dose-dependent manner. In an invasion assay conducted in Transwell chambers, laver extract showed 19.6 and 27.2% inhibition of cancer cell at 200 and 400 μg/mL, respectively, compared to the control. The mRNA levels of both MMP-2 and MMP-9 were down-regulated by laver extract treatment in a dose-dependent manner. Laver extract, at 400 μg/mL, was inhibited by MMP-2 and MMP-9 expressions by 70.1 and 77.0%, respectively. An inverse relationship in the mRNA contents of MMP-2/-9 and TIMP-1/-2 expressions in SK-Hep1 cells was found by laver extract treatment. Our results demonstrate antimetastatic properties of laver extract in inhibiting the adhesion, invasion, and migration of SK-Hep1 human hepatoma cancer cells.  相似文献   

4.
Cruciferous vegetables contain a series of relatively unique secondary metabolites of amino acids, called glucosinolates, from which isothiocyanates (ITC) can be generated. While glucosinolates are not thought to be bioactive directly, ITC appear to have anticarcinogenic activity. Sinigrin, the predominant aliphatic glucosinolate in cruciferous vegetables, is hydrolyzed to yield allylisothiocyanate (AITC), which, following absorption and metabolism in humans, is excreted in the urine as an N-acetyl-cysteine (NAC) conjugate. AITC possesses numerous biochemical and physiological activities. This study examined the induction of quinine reductase (QR) by AITC and synthetic AITC-NAC in Hepa1c1c7 murine hepatoma cells. AITC and AITC-NAC inhibited cell growth in a dose-dependent manner. The induction of QR activity and QR mRNA expression was dose-responsive over a range of 0.1-2.5 microM. AITC caused 2.0- and 3.1-fold inductions of QR with 1- and 2-microM treatments, respectively. By comparison, 1 and 2 microM AITC-NAC caused 2.9- and 3.7-fold inductions of QR, respectively. Considering the potential of ITC to prevent cancer, these results provide a basis for the use of NAC-ITC conjugates as chemopreventive agents.  相似文献   

5.
Allyl isothiocyanate (AITC) has been reported to exhibit antimetastatic activity, but the mechanism remains unclear. The objective of this study was to determine the effect of AITC on cell adhesion, migration, and metalloproteinase gene expression in SK-Hep1 human hepatoma cells. The gene expression profiles of SK-Hep1 cells were obtained by using the HG-U133A Affymetrix GeneChip human genome array containing 14,500 human genes. Twenty antimetastatic genes including COL4A3, ADAMDEC1, CAPN10, CD14, and ITGB1BP3 were over expressed, while the expression of 35 genes such as COL8A1, MYBPC1, ST14, and SOS2 were down-regulated. Semiquantitative RT-PCR confirmed these results in mRNA levels. Based on these in vitro results, it can be concluded that AITC might be potentially useful in suppressing tumor cell migration and MMP expression.  相似文献   

6.
Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis.  相似文献   

7.
Lee KW  Kang NJ  Kim JH  Lee KM  Lee DE  Hur HJ  Lee HJ 《Genes & nutrition》2008,2(4):319-322
Numerous studies have shown that the levels of matrix metalloproteinase (MMP)-2 and/or MMP-9 are associated with the invasive phenotypes of cancer cells. This study investigated the effects of caffeic acid phenethyl ester (CAPE), a chemopreventive phytochemical derived from honeybee propolis, on the invasive phenotype of SK-Hep1 human hepatocellular carcinoma cells (SK-Hep1 cells). CAPE effectively suppressed SK-Hep1 cell invasion in a dose-dependent manner. The constitutive expression of MMP-2 and MMP-9 in SK-Hep1 cells was almost completely abolished by treatment with 12.5 muM CAPE. CAPE also significantly inhibited nuclear factor kappa B (NF-kappaB) DNA-binding activity in SK-Hep1 cells. These results taken together suggest that CAPE exerts antimetastatic potential through inhibition of MMP-2 and MMP-9 expression, possibly by targeting NF-kappaB in hepatocellular carcinoma.  相似文献   

8.
Garcinol, from the fruit rind of Garcinia indica and other species, has been reported to suppress colonic aberrant crypt foci (ACF) formation in rats. In this study, we investigate the beneficial effects of tumor prevention by garcinol on the human colorectal cancer cell line, HT-29. Focal adhesion kinase (FAK) is the major signaling mediator of integrin-mediated cell-matrix contact-regulated cellular proliferation, migration, and apoptosis in adherent cells. Results of Matrigel analysis show that exposure of HT-29 cells to 10 microM garcinol inhibited cell invasion, and decreased the dose-dependent tyrosine phosphorylation of FAK. We further demonstrate by Western blot analysis that garcinol inhibited activation of the Src, MAPK/ERK, and PI3K/Akt signaling pathways. To investigate whether the loss of integrin-mediated cell-matrix contact can induce apoptosis, we demonstrate that garcinol induced it in HT-29 cells. The apoptotic dose of garcinol (20 microM) changed the ratio of the anti-apoptotic Bcl-2 and proapoptotic BAX proteins within 12 h, which correlated with a release of cytochrome c from the mitochondria to the cytosol, and with PARP cleavage. Additionally, we demonstrate that a decreasing MMP-7 protein level in HT-29 cells results in sensitization to garcinol. Garcinol also significantly inhibited the expression of MMP-7 in IL-1beta-induced HT-29 cells. These results suggest that garcinol reduces cell invasion and survival through the inhibition of FAK's downstream signaling.  相似文献   

9.
In order to define the role of As2O3 in regulating the tumor cell invasiveness, the effects of As2O3 on secretion of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), and in vitro invasion of HT1080 human fibrosarcoma cells were examined. As2O3 inhibited cell adhesion to the collagen matrix in a concentration dependent manner, whereas the same treatment enhanced cell to cell interaction. In addition, As2O3 inhibited migration and invasion of HT1080 cells stimulated with phorbol 12-myristate 13-aceate (PMA), and suppressed the expression of MMP-2, -9, membrane type-1 MMP, uPA, and uPA receptor (uPAR). In contrast, As2O3 increased the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and PA inhibitor (PAI)-1, and reduced the MMP-2, -9, and uPA promoter activity in the presence and absence of PMA. Furthermore, the promoter stimulating and DNA binding activity of nuclear factor-kappaB (NF-kappaB) was blocked by As2O3, whereas the activator protein-1 activity was unchanged. Pretreatment of the cells with N-acetyl-L-cysteine (NAC) significantly prevented suppression of MMPs and uPA secretion, DNA binding activity of NF-kappaB, and in vitro invasion of HT1080 cells by As2O3, suggesting a role of reactive oxygen species (ROS) in this process. These results suggest that As2O3 inhibits tumor cell invasion by modulating the MMPs/TIMPs and uPA/uPAR/PAI systems of extracellular matrix (ECM) degradation. In addition, the generation of ROS and subsequent suppression of NF-kappaB activity by As2O3 might partly be responsible for the phenomena. Overall, As2O3 shows potent activity controlling tumor cell invasiveness in vitro.  相似文献   

10.
11.
Glioma-associated oncogene homolog-1 (Gli-1) is considered a marker of Hedgehog pathway activation and is associated with the progression of several cancers. We have previously reported that Gli-1 was correlated with invasion and metastasis in hepatocellular carcinoma (HCC). However, the exact roles and mechanisms of Gli-1 in HCC invasion are unclear. In this study, we found that small interfering RNA mediated down-regulation of Gli-1 expression significantly suppressed adhesion, motility, migration, and invasion of both SMMC-7721 and SK-Hep1 cells. Furthermore, down-regulation of Gli-1 significantly reduced expressions and activities of both matrix metalloproteinase (MMP)-2 and MMP-9. In addition, we found that down-regulation of Gli-1 resulted in up-regulation of E-cadherin and concomitant down-regulation of Snail and Vimentin, consistent with inhibition of epithelial-mesenchymal transition (EMT). Taken together, our results suggest that down-regulation of Gli-1 suppresses HCC cell migration and invasion likely through inhibiting expressions and activations of MMP-2, 9 and blocking EMT.  相似文献   

12.
The increased migration and invasion of oral squamous cell carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. Although the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1α, have been found to play an important role in tumor invasion, its precise role and potential underlying mechanisms remain largely unknown. In this study, we showed that knockdown of CXCR4 significantly decreased Tca8113 cells migration and invasion, accompanied with the reduction of MMP-9 and MMP-13 expression. Inhibition of ligand binding to CXCR4 by a specific antagonist TN14003, also led to reduced cancer cell migration and invasion. Because the degradation of the extracellular matrix and the basement membrane by proteases, such as matrix metalloproteinases (MMP) is critical for migration and invasion of cancer cells, we investigated the expression of several MMPs and found that the expression of functional MMP-9 and MMP-13 was selectively decreased in CXCR4 knockdown cells. More importantly, decreased cell migration and invasion of CXCR4 knockdown cells were completely rescued by exogenous expression of MMP-9 or MMP-13, indicating that the two MMPs are downstream targets of CXCR4-mediated signaling. Furthermore, we found the level of phosphorylated extracellular signal-regulated kinase (ERK) was significantly decreased in CXCR4-silenced cells, suggesting that ERK may be a potential mediator of CXCR4-regulated MMP-9 and MMP-13 expression in Tca8113 cells. Taken together, our results strongly suggest the underlying mechanism of CXCR4 promoting Tca8113 migration and invasion by regulating MMP-9 and MMP-13 expression perhaps via activation of the ERK signaling pathway.  相似文献   

13.
14.
Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for cell migration. Binding of ECM to integrins initiates cascades of cell signaling events modulating expression and activity of different MMPs. The aim of this study is to investigate fibronectin–integrin-mediated signaling and modulation of MMPs. Our findings indicated that culture of human cervical cancer cell (SiHa) on fibronectin-coated surface perhaps sends signals via fibronectin–integrin-mediated signaling pathways recruiting focal adhesion kinase (FAK) extracellular signal regulated kinase (ERK), phosphatidyl inositol 3 kinase (PI-3K), integrin-linked kinase (ILK), nuclear factor-kappa B (NF-κB), and modulates expression and activation of mainly pro-MMP-9, and moderately pro-MMP-2 in serum-free culture medium.  相似文献   

15.
To investigate the effect and mechanism of microRNA-92b-3p (miR-92b-3p) targeting Homeobox D10 (HOXD10) on proliferation, migration, and invasion of gastric cancer, we detected t he expression of miR-92b-3p and HOXD10 in SGC-7901 cells. The effects of miR-92b-3p or HOXD10 on proliferation, migration, invasion, and matrix metalloproteinase (MMP)-2/9 expression in SGC-7901 cells were measured by the Cell Counting Kit-8 assay, Transwell assay, and Western blot, respectively. The results showed that miR-92b-3p expression was increased, and HOXD10 expression was decreased in SGC-7901 cells, compared with human normal gastric epithelial cells GES-1. Functional experiments demonstrated that cell proliferation, migration, invasion, and expression of MMP-2/9 in SGC-7901 cells were significantly inhibited by miR-92b-3p silencing and HOXD10 overexpression. Moreover, HOXD10 was a potential target gene of miR-92b-3p as evidenced by the TargetScan software and double luciferase reporter assay. In the rescue experiment, knockdown of HOXD10, accompanied by higher expression of MMP-2/9, could significantly eliminate the inhibitory effects of miR-92b-3p silencing on cell proliferation, migration, and invasion. In conclusion, miR-92b-3p is highly expressed in gastric cancer SGC-7901 cells, and interfering with its expression might inhibit SGC-7901 cell proliferation, migration, and invasion via downregulating MMP-2/9 expression and targeting HOXD10.  相似文献   

16.
Matrix metalloproteinases (MMPs) are extracellular zinc-dependent endopeptidases involved in the degradation and remodeling of extracellular matrix in physiological and pathological processes. MMPs also have a role in cell proliferation, migration, differentiation, angiogenesis, and apoptosis. We previously identified cancer invasion-related factors by comparing the gene expression profiles between parent and the highly invasive clone of cancer cells. Matrix metalloproteinase-13 (MMP-13) was identified as a common up-regulated gene by cancer invasion-related factors. Although MMP-13 slightly promoted tumor invasion, we found that MMP-13 was involved in tumor angiogenesis. Conditioned medium from MMP-13-overexpressing cells promoted capillary formation of immortalized human umbilical vein endothelial cells. Furthermore, treatment with recombinant MMP-13 protein enhanced capillary tube formation both in vitro and in vivo. MMP-13-promoted capillary tube formation was mediated by activation of focal adhesion kinase and ERK. Interestingly, MMP-13 promoted the secretion of VEGF-A from fibroblasts and endothelial cells. By immunohistochemical analysis, we found a possible correlation between MMP-13 expression and the number of blood vessels in human cancer cases. In summary, these findings suggest that MMP-13 may directly and indirectly promote tumor angiogenesis.  相似文献   

17.
Chen PS  Shih YW  Huang HC  Cheng HW 《PloS one》2011,6(5):e20164

Background

Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum), was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells.

Methods and Principal Findings

Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN) were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2) was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF) in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt, extracellular signal regulating kinase (ERK) and c-Jun N-terminal kinase (JNK). In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that diosgenin inhibited NF-κB activity.

Conclusion/Significance

The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy.  相似文献   

18.
19.
肾细胞癌(RCC)是最常见的恶性癌之一,癌症转移是目前导致肾癌患者死亡的主要原因之一。MMP-9被发现在许多具有侵袭性和转移能力的人类癌症中过表达,其表达和分泌受到NF-κB调控;VEGF在维持原发性癌和转移瘤生长所需的血管生成中发挥重要作用,其表达也受到活化的NF-κB调节。海参的多种活性物质在抗氧化、抗菌和抗癌方面都有出色的作用,而抗癌的主要机制则包括诱导癌细胞凋亡、抑制癌细胞生长、减少癌细胞转移等。本研究通过利用不同浓度的海参多糖处理人肾癌细胞A498,采用MTT细胞增殖实验、粘附实验、迁移实验和小室侵袭实验,研究了海参多糖对A498细胞的生长转移的影响;采用蛋白印记法检测了海参多糖对A498细胞内MMP-9、NF-κBp65和VEGF表达水平的影响。结果表明,海参多糖能够显著抑制A498细胞的增殖活力、粘附能力、迁移能力和侵袭能力,并且全都表现出明显的剂量依赖性;中浓度(100μg/mL)和高浓度(200μg/mL)的海参多糖能够显著下调A498细胞内MMP-9、NF-κBp65和VEGF的表达。这些结果说明海参多糖能有效抑制人肾癌细胞A498的生长、转移和侵袭,可能的机制是通过抑制NF-κB信号通路下调MMP-9和VEGF的表达,从而发挥抗癌细胞转移的作用。  相似文献   

20.
Matrix metalloproteinases (MMPs) degrade the extracellular matrix (ECM) and play critical roles in tissue repair, tumor invasion, and metastasis. MMPs are regulated by different cytokines, ECM proteins, and other factors. However, the molecular mechanisms by which osteopontin (OPN), an ECM protein, regulates ECM invasion and tumor growth and modulates MMP activation in B16F10 cells are not well defined. We have purified OPN from human milk and shown that OPN induces pro-MMP-2 production and activation in these cells. Moreover, our data revealed that OPN-induced membrane type 1 (MT1) MMP expression correlates with translocation of p65 (nuclear factor-kappaB (NF-kappaB)) into the nucleus. However, when the super-repressor form of IkappaBalpha (inhibitor of NF-kappaB) was transfected into cells followed by treatment with OPN, no induction of MT1-MMP expression was observed, indicating that OPN activates pro-MMP-2 via an NF-kappaB-mediated pathway. OPN also enhanced cell migration and ECM invasion by interacting with alpha(v)beta(3) integrin, but these effects were reduced drastically when the MMP-2-specific antisense S-oligonucleotide was used to suppress MMP-2 expression. Interestingly, when the OPN-treated cells were injected into nude mice, the mice developed larger tumors, and the MMP-2 levels in the tumors were significantly higher than in controls. The proliferation data indicate that OPN increases the growth rate in these cells. Both tumor size and MMP-2 expression were reduced dramatically when anti-MMP-2 antibody or antisense S-oligonucleotide-transfected cells were injected into the nude mice. To our knowledge, this is the first report that MMP-2 plays a direct role in OPN-induced cell migration, invasion, and tumor growth and that demonstrates that OPN-stimulated MMP-2 activation occurs through NF-kappaB-mediated induction of MT1-MMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号